« Undernutrition, Juvenile growth and Microbiota »

François Leulier

Institut de Génomique Fonctionnelle de Lyon

Ecole Normale Supérieure de Lyon

France

Drosophila melanogaster a host model to study host-nutrition-commensals interactions

Drosophila melanogaster a host model to study host-nutrition-commensals interactions

Are there mutualists among commensals?

Do commensals influence Drosophila juvenile growth?

Do commensals influence Drosophila juvenile growth?

Chronic undernutrition triggers Drosophila stunting

Commensals promote Drosophila juvenile growth upon undernutrition

CR: Conventionally reared (+commensals) **GF**: Germ-Free

Commensals promote Drosophila juvenile growth upon undernutrition

I6S rDNA gene profiling

CR yw whole body library

Phylotype	Closest strain	% identity
Enterococcus faecalis	Enterococcus faecalis V583	99%
Lactobacillus plantarum	Lactobacillus plantarum WCFS1	99%
Aerococcus spp.	Aerococcus viridans ATCC11563	97%

CR yw adult midgut library

Phylotype	Closest strain	% identity
Enterococcus faecalis	Enterococcus faecalis V583	99%
Lactobacillus plantarum	Lactobacillus plantarum WCFS1	99%
Corynebacterium variabile	Corynebacterium variabile DSM20132	98%

CR: Conventionally reared (+commensals) **GF**: Germ-Free

Mono-association of GF animals with one commensal: Lactobacillus plantarum promotes Drosophila juvenile growth

Mono-association of GF animals with one commensal: Lactobacillus plantarum promotes Drosophila juvenile growth

Lactobacillus plantarum^{WJL} = Drosophila mutualist

(some strains of Acetobacter too)

Selection of growth-promoting Lactobacilli strains (size gain)

Selection of growth-promoting Lactobacilli strains (size gain)

Selection of growth-promoting Lactobacilli strains (size gain)

Ideal experimental model to probe the molecular underpinnings of Lactobacilli-mediated juvenile growth performance

Host side:

Upon undernutrition, microbiota in general and *L.plantarum* in particular promote juvenile growth...

... in a strain dependent manner

Storelli et al. (2011) Cell Metabolism 14, 403-414

Host side:

Upon undernutrition, microbiota in general and *L.plantarum* in particular promote juvenile growth...

...via enhanced maturation hormone and growth factors activity...

... in a strain dependent manner

Storelli et al. (2011) Cell Metabolism 14, 403-414

(L.plantarum) Increased Intestinal peptidases activity **Dietary AA uptake** Haemolymph Fat-body TOR Prothoracic TOR gland Brain Insulin-like peptides Ecdysone

Length of the growth phase

Growth rate

Time

Undernutrition

Commensal bacteria

Intestinal epithelium

Organismal Size

Host side:

Upon undernutrition, microbiota in general and *L.plantarum* in particular promote juvenile growth...

...via enhanced dietary AA uptake...

...via enhanced maturation hormone and growth factors activity...

...in a strain dependent manner

Storelli et al. (2011) Cell Metabolism 14, 403-414 Erkosar et al. (2014) PLoS ONE 9, e94729 Erkosar et al. (2015) Cell Host and Microbe 18, 445-55

Role of microbial environment on mammalian juvenile growth upon undernutrition?

© vincentmoncorge.com

Do the intestinal microbiota and/or selected Lactobacilli strains influence mouse juvenile growth upon chronic undernutrition

Collab: Dr M.Schwarzer & Dr H.Kozakova Laboratory of Gnotobiology Institut of Microbiology Science Academy of Czech Republic

Dr H.Vidal & Dr J.Rieusset CarMeN Laboratory INSERM/Univ. Claude Bernard Lyon

Gnotobiotic Balb/c line Do the intestinal microbiota and/or selected Lactobacilli strains influence mouse juvenile growth upon chronic undernutrition

Collab: Dr M.Schwarzer & Dr H.Kozakova Laboratory of Gnotobiology Institut of Microbiology Science Academy of Czech Republic

Dr H.Vidal & Dr J.Rieusset CarMeN Laboratory INSERM/Univ. Claude Bernard Lyon

Lp^{NIZO287}

Gnotobiotic Balb/c line

growth promoting strains

Lp^{wjL}

Microbiota and selected Lactobacilli strains maintain mouse juvenile growth upon chronic undernutrition

Somatotropic axis regulates post-natal growth...

Somatotropic axis regulates post-natal growth...

... its activity is altered upon undernutrition (state of GH-resistance)

Microbiota and selected Lactobacilli maintain tissue sensitivity to GH upon chronic undernutrition

Microbiota and selected Lactobacilli maintain tissue sensitivity to GH upon chronic undernutrition

Schwarzer et al. (2016) Science 19;351(6275):854-7

The microbiota acts as a buffer to the adverse effects of chronic undernutrition on linear growth

The microbiota acts as a buffer to the adverse effects of chronic undernutrition on linear growth

The microbiota maintains somatotropic axis activity (improved GH-sensitivity)

The microbiota acts as a buffer to the adverse effects of chronic undernutrition on linear growth

The microbiota maintains somatotropic axis activity (improved GH-sensitivity)

Selected Lactobacilli strains recapitulate the microbiota effect in a strain dependent manner

The microbiota acts as a buffer to the adverse effects of chronic undernutrition on linear growth

The microbiota maintains somatotropic axis activity (improved GH-sensitivity)

Selected Lactobacilli strains recapitulate the microbiota effect in a strain dependent manner

Evolutionary conserved functionality of selected Lactobacilli strains to maintain juvenile growth upon chronic undernutrition

The microbiota acts as a buffer to the adverse effects of chronic undernutrition on linear growth

The microbiota maintains somatotropic axis activity (improved GH-sensitivity)

Selected Lactobacilli strains recapitulate the microbiota effect in a strain dependent manner

Evolutionary conserved functionality of selected Lactobacilli strains to maintain juvenile growth upon chronic undernutrition

Perspectives

Effect of *Lp*^{WJL} on CONV mice linear growth upon chronic undernutrition

The microbiota acts as a buffer to the adverse effects of chronic undernutrition on linear growth

The microbiota maintains somatotropic axis activity (improved GH-sensitivity)

Selected Lactobacilli strains recapitulate the microbiota effect in a strain dependent manner

Evolutionary conserved functionality of selected Lactobacilli strains to maintain juvenile growth upon chronic undernutrition

Perspectives

Effect of *Lp*^{WJL} on CONV mice linear growth upon chronic undernutrition

How Lp^{WJL} impinges on the somatotropic axis activity

