

Effect of Cytomegalovirus Infection on Immune Responsiveness

Rene van Lier Sanquin Blood Supply Foundation

OUTLINE

- CMV infection and vaccination responses
- Effects of CMV infection on
 - CD8+ T cell numbers

Blood versus Lymph Nodes

- Proteomes and Transcriptomes of differentiated CD8⁺ T cells
- Markers of inflammation

CMV seropositivity decreases responses to the influenza vaccination

Flu-specific CD8 response 100 80 % individuals CMV-60 CMV+ 40 20 0 <65 yrs >65 yrs

(fold-increase after vaccination) p=0.01 p=0.03 H1N1-specific HAI response 20 0000 15 10-0,0 5 000 CMV-CMV+ CMV-CMV+ ELDERLY YOUNG H1N1-specific HAI response 0.006 0.032 ns ns 1500 (reciprocal of the titers) 000 1000 500 tO tO t7 tO t7 tO t7 CMV+ CMV-CMV-CMV+ YOUNG

Antibody response

Evelyna Derhovanessian et al. J Immunol 2014;193:3624-3631

Daniela Frasca et al; Vaccine, 2015; 33: 1433-1439

ELDERLY

Human Cytomegalovirus (CMV)

- CMV is a persistent β-herpesvirus affecting approximately 60% of healthy individuals
- Main tropism: white blood cells, endothelial cells
- Transmission occurs by body fluids
- Primary infection is often asymptomatic in healthy individuals
- From species origination on CMV has been within the human population (mutual adaptation)
- Immune responses to CMV are by far the most potent anti-viral responses in humans

Changes in CD8+ T cell subsets as a consequence of primary CMV infection after kidney transplantation

CMV-positive kidney

CMV latency induces an increase in the number of circulating CD8⁺ T cells

Changes induced in the lymphocyte pool by HCMV

- Appearance of high numbers of CD8+CD27⁻ T cells with constitutive effector functions
- Increase in CD8+ T cell percentages and numbers
- Emergence of CD4+CD28⁻, cytolytic cells
- Expansion of $V\gamma 2^{-}\gamma \delta$ T cells
- Increase in NKG2C⁺ NK cells

Attrition of memory T cells

- It has been proposed that the number of memory (CD8⁺) T cells in a host is inflexible, and that individual cells are constantly competing for limited space.
- Infections or vaccines that introduce over-abundant quantities of memory CD8 T cells could have detrimental consequences for the host by displacing naive cells and memory T cells specific for previous infections.
- (Especially) elderly frequently have strong expansions of (oligoclonal) CD8⁺ T cells that are often associated with latent cytomegalovirus infection.

Could occupation of immunological space by these cells in <u>Lymph Nodes</u> be contribute to low responses in CMV-infected people?

Isolation of lymphnodes from the para-iliacal area

CMV-specific CD8+ T cells have a low frequency in Lymph Nodes

In lymph nodes EBV-specific cells exceed CMV-reactive

Could CMV-expanded (CD8⁺) T cells interfere with priming of naive and memory T cells in human Lymph Nodes?

Unlikely,

CMV-specific CD8⁺ T cells do not accumulate in lymph nodes and also CD4⁺CD28⁻ cells are largely excluded *(Havenith et al., Int Immunol, 2014)*

If not space, what about function?

Properties of CD8+CD45RA+ CD27⁻ T cells

- Population of resting T cells with low proliferation and low death rate (Wallace et al., J Immunol, 2004)
- Characteristic marker profile: CCR7⁻, CD28⁻, CD57⁺, 2B4⁺, CD11a^{bright}, GPR56, CX3CR1
- Inducible expression of IFN γ and TNF α , but not IL2
- Constitutive expression of perforin, granzymes A and B; direct cytolytic activity: *resting* <u>effector-type</u> cells
- Population increases with age and in situations of mild immunosuppression

Gradual proteome changes with increased T cell differentiation

Michiel van Aalderen & Maartje van den Biggelaar

	LEF1
	FoxP3
	RORC (RORγt)
	GATA3
	Eomes
ENV	TBX21 (T-Bet)
IFIN	ZNF683
	PRDM1 (BLIMP-1)
	IRF4
	Bach2
	NR3C2
	Znf365

Transcription factors regulated during human CMV-induced CD8+ T cell differentiation

Hertoghs et al., J Clin Invest, 2010

CMV-specific CD8⁺ T cells have an IFNγ signature

	•	Primary CMV infection		Healthy HCMV ⁺ donor	Healthy HCMV ⁺ donor	
Gene symbol	Accession Nr.	Peak	1 year	Latency	Effector type	Memory
IFNG	NM_000619	38,8	42,4	53,6	16,8	7,7
IFI27	NM_005532	25,3	17,3	1,5	1,3	1,3
IFI16	I_1997689	20,5	25,6	15,8	11,4	7,4
OAS1	NM_002534	18,2	4,7	1,4	1,7	1,2
IFI44L	NM_006820	11,5	-1,4	-1,6	-1,3	-1,3
IFI30	J03909	11,5	10,9	4,8	-1,1	-1,1
IRF4	NM_002460	10,0	5,2	4,0	5,6	2,7
ISG15	NM 005101	9,0	2,5	1,6	1,6	1,5
IFIT1	NM_001548	7,8	-1,2	13,7	3,9	2,0
IFIT3	NM_001549	7,0	1,2	24,8	5,8	2,8
MX1	NM_002462	5,3	-1,6	-2,0	-2,8	-1,1
ISG20	NM 002201	4,6	1,9	2,0	1,8	1,8
OASL	NM_003733	4,4	2,1	18,9	15,2	6,1
IFIT2	NM_001547	2,7	1,2	18,9	7,9	2,3
IFIT2	BC005987	2,3	1,5	20,5	17,1	4,8
IFNAR1	NM 000629	-1,6	-1,7	-2,6	-1,4	1,3
IFNGR2	NM_005534	-3,7	-4,0	-3,7	-3,0	-3,3

Type 1 response during primary CMV infection after renal Tx

Type 1 responses during latent CMV after Tx

CMV also induces systemic type 1 cytokine response in a subset of healthy individuals

CMV+; n= 37 CMV-; n= 37

Van de Berg et al., J Inf Dis, 2010

You can't have it all?

Nolte and van Lier, J.Exp.Med., 2006

Conclusions

- The strong immune response to CMV is unlikely to restrict immunological space for naïve cells and memory cells in lymph nodes.
 - Spleen, Bone Marrow?
- In mice (Vezys et al., *Nature*, 2009) hyperimmunization strongly increased vaccin-specific CD8⁺ T cell numbers but preserved immunological memory and CD4, B and naïve CD8 numbers.
- Possibly, factors produced by cells specific for latent viruses (i.e. CMV) may downregulate immune responses (IFNγ)

- Is this good news for vaccination strategies in the CMV-infected elderly?
 - > Adjuvants?

COLLABORATORS

Renal Transplant Unit

Michiel van Aalderen Ester Remmerswaal Pablo van de Berg Ineke ten Berge

Sanquin Research

Maartje van den Biggelaar

Dept of Experimental Immunology

Paul Baars Kirsten Hertogs Eric Eldering

Dept of Neurogenetics

Frank Baas

Amsterdam, The Netherlands

CMV-induced, effector type T cells also express CXCR3 (= IP10 receptor)

> CMV-induced effector-type CD4+ and CD8+ T cells have chemokine receptors that allow them to migrate to stimulated endothelium