Vaccine Chemistry: A Platform for Optimizing Adaptive Immunity

Hurdles for Vaccines Against Infections and Tumors

- HIV- Broadly neutralizing antibodies (high somatic mutation): Requires immunogen design and novel approaches to vaccine delivery
- Malaria/TB- Requires high and sustained levels of antibodies, tissue resident T cells (liver), TB (lung)
- Cancer- Personalized vaccines based on neoantigens to induce T cells: Rapid and scalable process to make vaccine
- Infections of infants and elderly (RSV, Flu, Pertussis, Zoster): Immunogens and adjuvants

Tool Box of Vaccine Vectors in Clinical Studies for Infections and Tumors

- -DNA, RNA
- Adenovirus (Ad5, Ad26, Ad35, ChAd3)
- Poxvirus (MVA, NYVAC, ALVAC)
- Protein/Adjuvant

Focus of this Presentation:

 Formulation and delivery of proteins and adjuvants for optimizing antibody and T cell immunity

Rationale for Protein Based Vaccines

- 1. Protein vaccines induce broad-based immunity
 - Antibody
 - Th1 but low level CD8+ T cell responses
- 2. Protein vaccines used in heterologous primeboost regimens with other platforms
- 3. Protein vaccines are not limited by pre-existing immunity and can be used repeatedly

Viruses as a Guide to Vaccine Design

<u>ADJUVANT</u>

Innate activation by RNA or DNA

DELIVERY PLATFORM

 Synchronous delivery of antigen particle with innate stimulation

ANTIGEN

Multivalent array of antigen

Adjuvant Selection:

TLR Agonists Activate Distinct Human Dendritic Cell Subsets

^{*}Poly I:C can induce IFN-a via non-TLR independent pathways (MDA-5)

Example Application: Delivery of Toll-Like Receptor-7/8 Agonists

- Activates all human DC subsets, monocytes and B cells
- Receptors are endosomally localized
- Natural ligand is ssRNA
- Synthetic agonists are analogs of nucleotide bases

Imiquimod (TLR-7a)

Resiquimod (TLR-7/8a)

Imidazoquinolines

Approved for treatment of cutaneous cancer

Gerster, J.; et al. J. Med. Chem. 48, 3481-3491 (2005) (3M Pharmaceuticals)

Pharmacokinetics of TLR-7/8 Agonists (TLR 7/8a)

Broad biodistribution leads to:

- Systemic innate immune activation (TOXICITY)
- Antigen without TLR-7/8a stimulation (TOLERANCE)

Polymer Carriers of TLR-7/8a (Poly-7/8a)

Primary Aim: Restrict agonist distribution

- Enhance local activity
- Decrease systemic toxicity

Secondary Aim: Evaluate how chemically tunable properties permit control over immune activity in vivo

Polymers Used for Medical Applications

- Polymers are used in food, cosmetics and as "delivery systems" for controlling spatial and temporal activity of drugs
- Polymers drug delivery systems can be used to improve activity of antigen and immunostimulants and should be:
 - Non-toxic, biocompatible and biodegradable (preferred)

<u>Polymer</u>

Polyethylene glycol (PEG)

Poly(lactic-co-glycolic acid) (PLGA)

Application

Used to increase drug solubility, increase half-life

Used in drug delivery, sutures and stents

Product

Pegasys (pegylated IFN)

Lupron Depot (controlled release of Lupron)

Acrylamide-based polymers

Contact lenses, and chemotherapeutic delivery

HPMA-Doxorubicin

Tunable Properties of Poly-7/8a

Generic structure of Poly-TLRa

Tunable properties

- Length and composition
 - PK and cell uptake
- Y = agonist density (0 −10%)
 - Avidity of receptor binding, durability
- Linker group / attachment site
 - Rate of release, durability
 - Timing of onset of immune activation
- Controlled array of ligands
 - Agonist, antigen, targeting molecules

TLR-7/8a Density Increases Lymph Node Cytokines In Vivo

Increasing TLR-7/8a Density Leads to Particle Formation

Is particle formation, agonist density, or both critical for activity?

Pharmacokinetics and Bio-distribution of PP 7/8a

Polymer coil (PC)

Polymer particle (PP)

Pharmacodynamics of PP-7/8a and CpG

90

85

0.5

1.0

Time (days)

6

Particulate Poly-7/8a (PP-7/8a) Enhances Dendritic Cell Uptake and Trafficking to Draining Lymph Node

Uptake per cell (24h)

PP-7/8a Induces Protective <u>CD8 T Cell</u> Responses Against *Listeria*-OVA Challenge

PP-7/8a Induces Protective <u>CD4/Th1</u> Responses Against Leishmania major Challenge

Summary of Polymer Adjuvant Platform

- ☐ Generalizable approach: modular polymer platform allows systematic evaluation of different physicochemical properties of multiple TLR agonists (TLR-7/8a, TLR-2/6a, TLR-4a)
- <u>Mechanism</u>: <u>particle</u> formation critical for enhancing persistent local innate immune activation
- Application: Vaccines requiring antibody and T cell immunity

Extend platform to co-delivery of protein and adjuvant:

- 1. Site-specific attachment
- 2. Controlled array of immunogen on particle

Improving Formulation Stability

- -Single vials of water soluble vaccines are stored at 4-20°C are ideal for use, stability and cost
- -Particles are more immunogenic than soluble molecules

Solution: Form immunogenic particles in vivo

Coiled-Coil Interactions <u>Co-Deliver</u> Antigen and Adjuvant on Temperature Responsive Particles (TRP)

Non-specific chemical cross-linkers can mask neutralizing epitopes
 Use site-selective linkers (28 non-natural aa)

Co-delivery using coiled-coil interactions (hydrophobic/hydrophilic)

Self-assembly using stimuliresponsive polymers

Site-Selective Attachment of Protein/Peptide Antigen Using Coiled-Coil Interactions

Thermo-Responsive Polymers (TRP)

In vivo particle formation leads to enhanced immunogenicity

Optimizing Subunit Vaccine Immunogenicity

Structure-based immunogen design

Immunostimulant

Antigen delivery

 Multi-epitope array to optimally engage BCRs **Delivery Platform**

CONTROL

- Defined orientation to conserve antigenicity
- Use to deliver peptides
- Improve quality of Ab

<u>Immunostimulant</u>

- Spatially restrict activity to prevent acute toxicity
- Target specific APCs to optimize T cell immunity
- Control innate activation

Acknowledgements

Seder Lab

Geoff Lynn

Tricia Darrah

Joe Francica

Alexandra Balaci

Andrew Ishizuka

Azza Idris

Barbara Flynn

Kailan Sierra-Davidson

Mercy Ude

Neeha Zaidi

Neville Kisalu

Graham Lab

Barney Graham Man Chen

Kwong Lab

Peter Kwong

Gordon Joyce

Ivelin Georgiev

Guillaume Stewart-Jones

Baoshan Zhang

Tongqing Zhou

Animal facility

Carmelo Chiedi

Marlon Dillon

Wuddi Kefale

Alida Taylor

Hana Bao

National Institute of Allergy and Infectious Diseases

Margery SmelkInson Michael Gerner Brenda Klaunberg

Seymour Lab

Len Seymour Kerry Fisher Ryan Cawood

Tom Hills

IMC (Prague)

Karel Ulbrich
Richard Laga
Michal Pechar
Robert Pola
Karel Ulbrich

Rolf Swenson
Olga Vasalatiy
Andres Dulcey
Changhui Li

Green Lab

Jordan Green Joel Sunshine