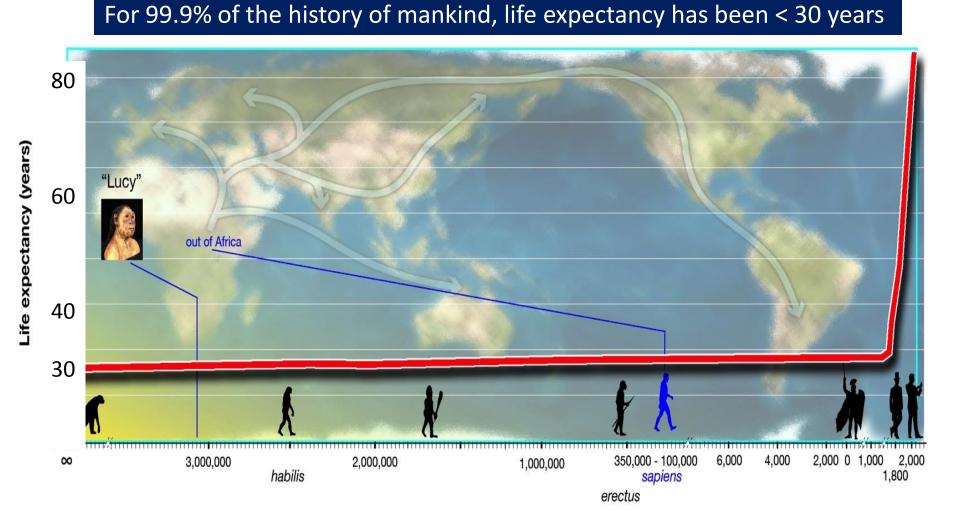

The Landscape of Current and New Vaccines

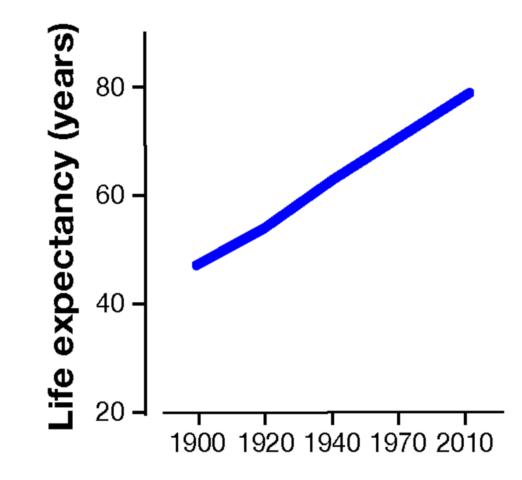
Jerome H. Kim, MD Director General


International Vaccine Institute

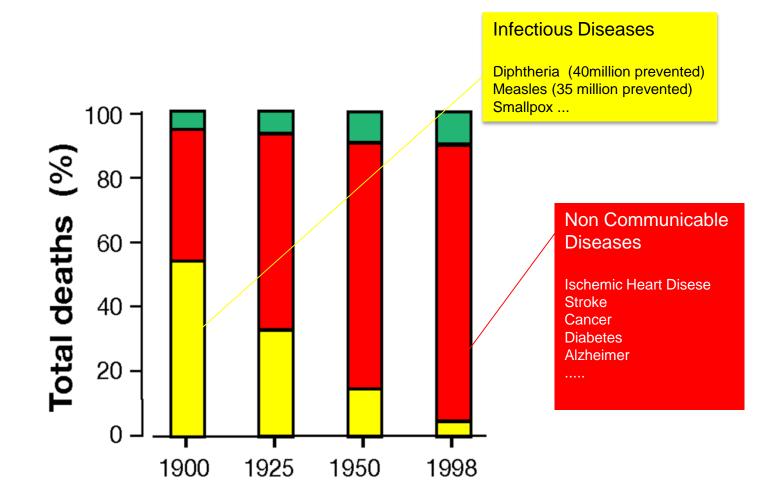
MISSION

Discover, develop and deliver safe, effective and affordable vaccines for global public health

Until recently human life everywhere was nasty, brutish and short



Why? And How?


Starting in the 19th century life expectancy rose

Life Expectancy in the United States

Infectious disease mortality has decreased

Much of the decrease can be attributed to vaccination

- Vaccination has reduced cases by >3.0 billion
 >500 million deaths prevented
- From 2011-2020 vaccines will save
 - 25 million deaths
 - 2.5 million/year
 - 7000/day
 - 300/hour
 - 5/min

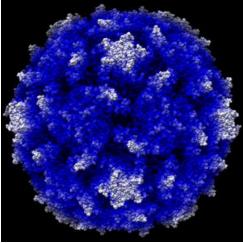
WHO Global Action Plan

http://www.who.int/immunization/global_vaccine_action_plan/GVAP_doc_2011_2020/en/index.html)

In the United States, from 1994 – 2013, the Centers for Disease Control and Prevention estimated that vaccination saved lives and reduced the cost of illness (MMWR 2014; 63:16).

Vaccines prevented

- •322 million illnesses
- •21 million hospitalizations
- •732,000 deaths


Vaccines saved:

- •\$295 billion direct costs
- •\$1.38 trillion in total societal costs

Until recently many vaccines followed a simple formula

Poliovirus, 2.9A resolution

Isolate Inactivate / Attenuate

Inject the microorganism causing disease

1930

Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

In the last 30 years, there has been a revolution in vaccine discovery

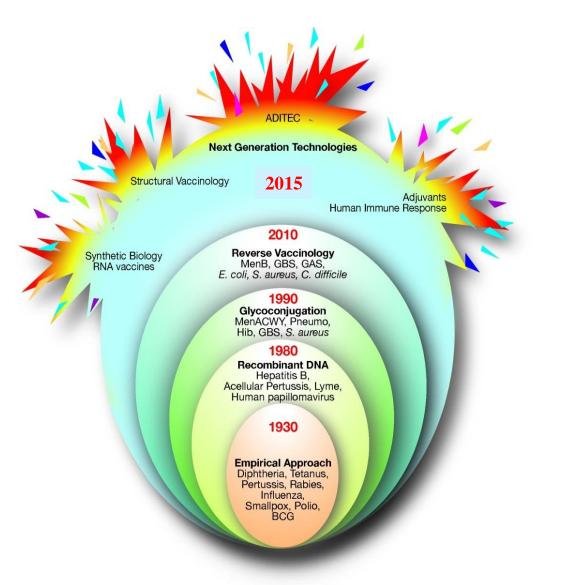
2010

Reverse Vaccinology MenB, GBS, GAS, *E. coli, S. aureus, C. difficile*

1990

Glycoconjugation MenACWY, Pneumo, Hib, GBS, S. aureus

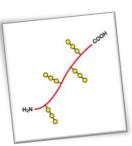
1980


Recombinant DNA Hepatitis B, Acellular Pertussis, Lyme, Human papillomavirus

1930

Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

And there is greater promise in the future

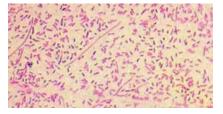

Next Generation Technologies Structural Vaccinology Synthetic Biology/RNA Adjuvants/Human Immune Response

> Reverse Vaccinology MenB, GBS, GAS, E. coli, S. aureus, C. difficile

Glycoconjugation MenACWY, S. pneumo, Hib, GBS, S. aureus

Recombinant DNA Hepatitis B, Acellular Pertussis, Lyme, Human papillomavirus

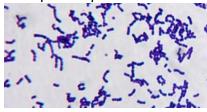
Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

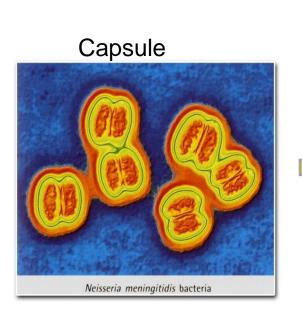


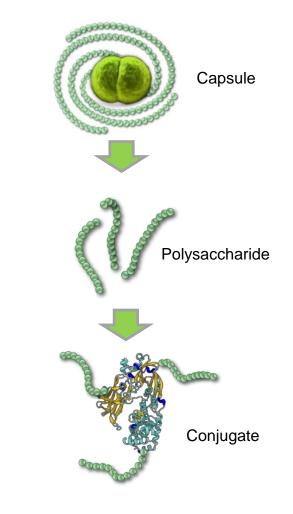
Conjugate vaccines

Capsular polysaccharides & conjugates

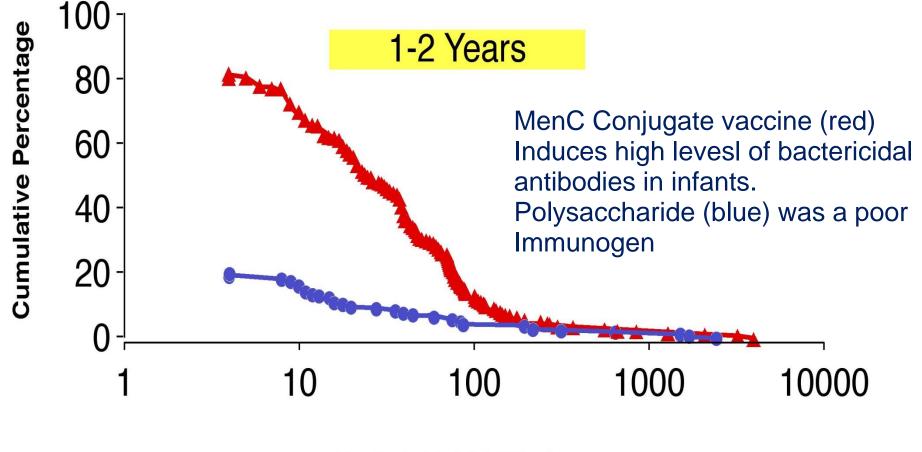
Haemophilus influenzae type B (Hib)



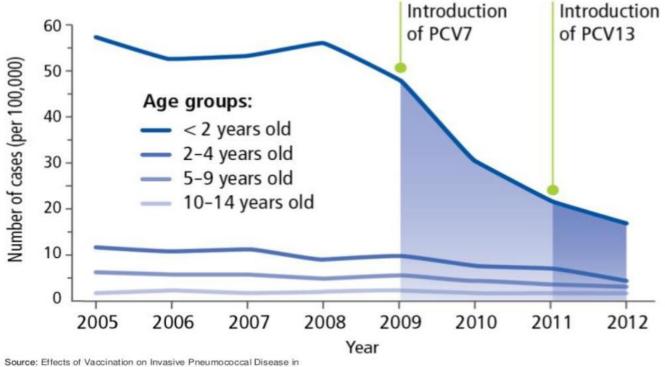

Pneumococcus


Meningococcus

Group B streptococcus



Conjugation of polysaccharide to protein improves immunogenicity in infants


Bactericidal (1/Titer)

Impact of PCV: RSA

Substantial reduction in pneumococcal disease in South Africa thanks to vaccines

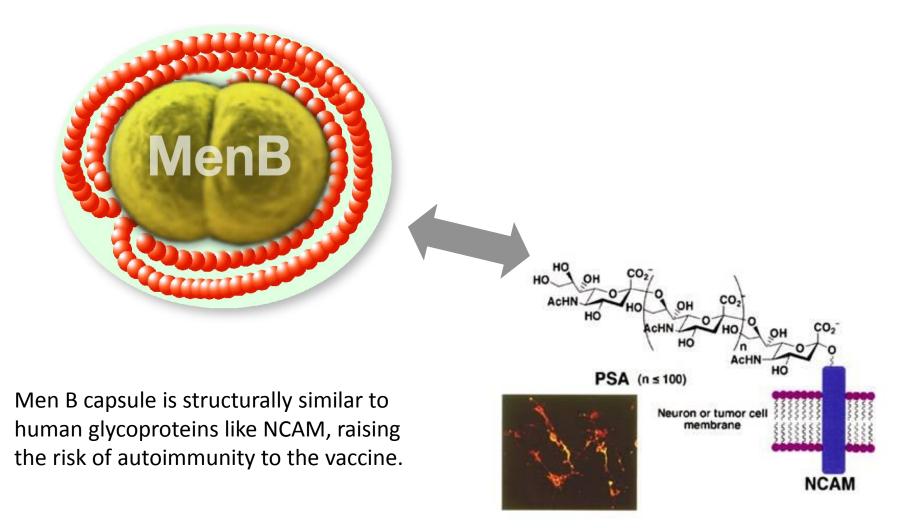
Invasive pneumococcal disease cases by age group

Next Generation Technologies Structural Vaccinology Synthetic Biology/RNA Adjuvants/Human Immune Response

> Reverse Vaccinology MenB, GBS, GAS, E. coli, S. aureus, C. difficile

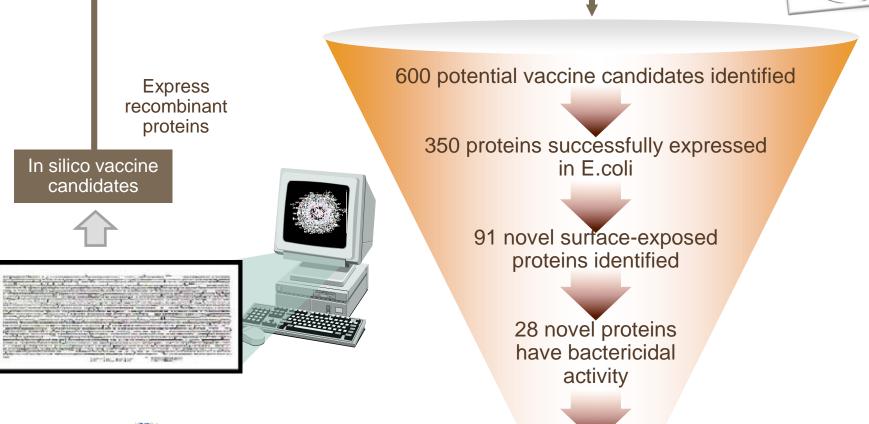
Glycoconjugation MenACWY, S. pneumo, Hib, GBS, S. aureus

Recombinant DNA Hepatitis B, Acellular Pertussis, Lyme, Human papillomavirus


Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

Reverse Vaccinology

and a vaccine for Meninigococcus B


Meningococcus B capsule is a self antigen and cannot be used for vaccination

Reverse Vaccinology: genomic approach

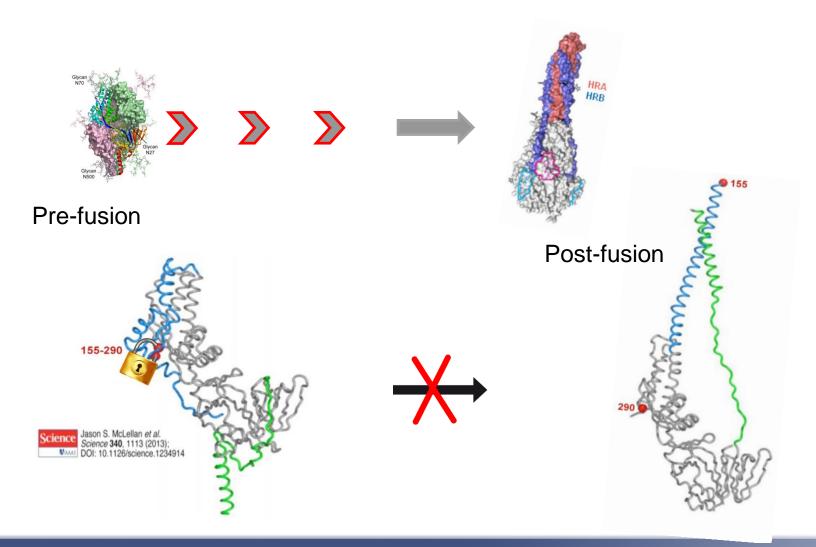
VACCINE CANDIDATES

Next Generation Technologies Structural Vaccinology Synthetic Biology/RNA Adjuvants/Human Immune Response

> Reverse Vaccinology MenB, GBS, GAS, E. coli, S. aureus, C. difficile

Glycoconjugation MenACWY, S. pneumo, Hib, GBS, S. aureus

Recombinant DNA Hepatitis B, Acellular Pertussis, Lyme, Human papillomavirus


Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

Structural Vaccinology

Structure-based antigen design

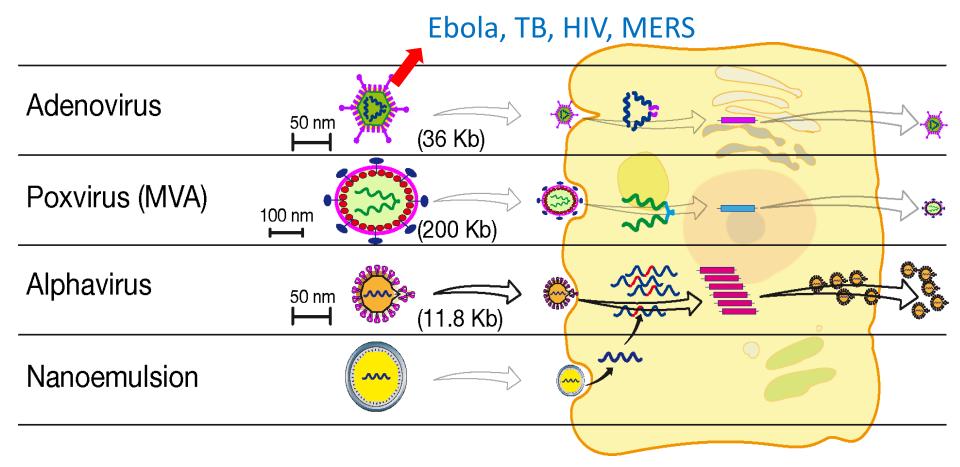
Structural Vaccinology: Respiratory syncytial virus

Next Generation Technologies Structural Vaccinology Synthetic Biology/RNA Adjuvants/Human Immune Response

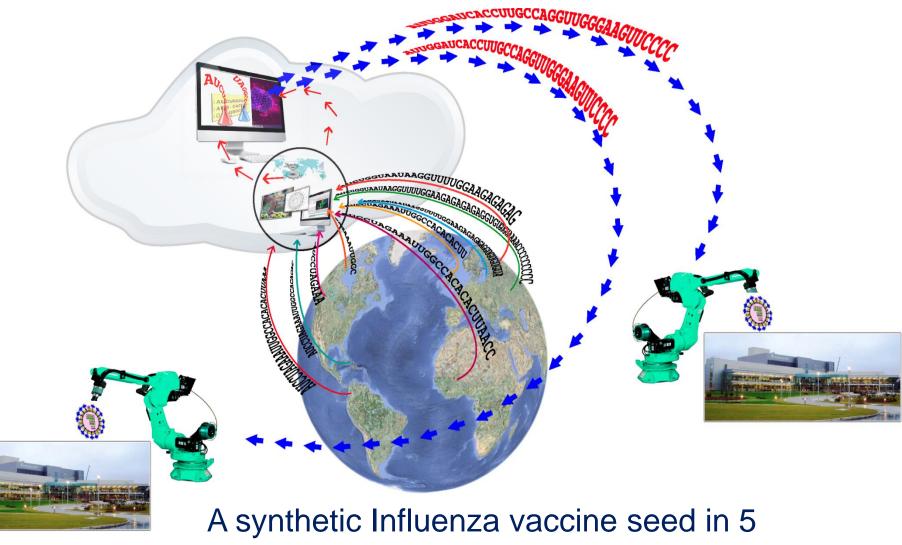
> Reverse Vaccinology MenB, GBS, GAS, E. coli, S. aureus, C. difficile

Glycoconjugation MenACWY, S. pneumo, Hib, GBS, S. aureus

Recombinant DNA Hepatitis B, Acellular Pertussis, Lyme, Human papillomavirus


Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

Synthetic biology


Synthetic vaccines: engineering viruses to express target antigens

Using replicating and non replicating viral vectors to transfer genes to cells

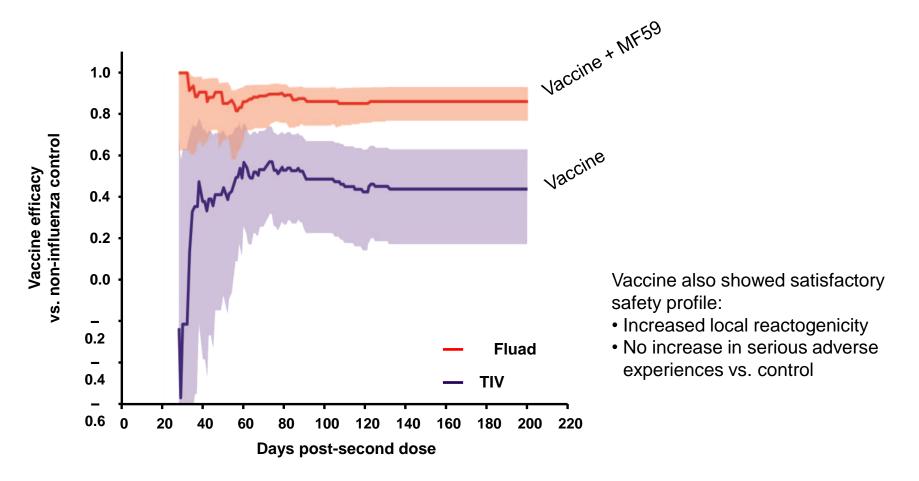
Molecular techniques offer unprecedented speed

days, a synthetic RNA vaccine in 10 days

Next Generation Technologies Structural Vaccinology Synthetic Biology/RNA Adjuvants/Human Immune Response

> Reverse Vaccinology MenB, GBS, GAS, E. coli, S. aureus, C. difficile

Glycoconjugation MenACWY, S. pneumo, Hib, GBS, S. aureus


Recombinant DNA Hepatitis B, Acellular Pertussis, Lyme, Human papillomavirus

> Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

Adjuvants: turning the dirty little secret into better, stronger, faster, longer vaccines

MF59 increases efficacy of influenza vaccine in children from 43 to 86%

Vesikari T, et al. NEJM.

Vaccines in the news 2015 [1]

Malaria

Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial

RTS,S Clinical Trials Partnership*

www.thelancet.com Vol 386 July 4, 2015

Zoster vaccine 97% efficacy in the elderly

Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults

N ENGL J MED 372;22 NEJM.ORG MAY 28, 2015

Ebola vaccine 100% efficacy

Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial

www.thelancet.com Published online July 31, 2015

Vaccines in the news 2015 [2]

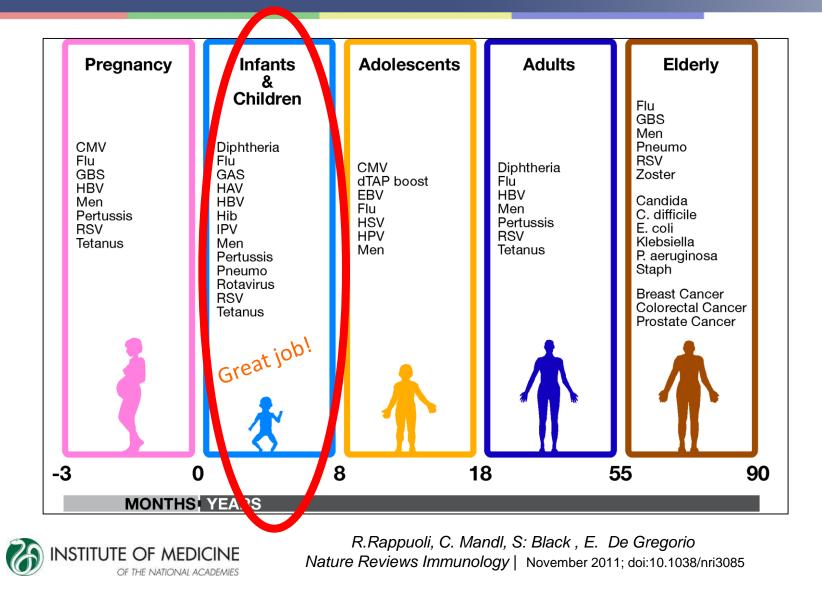
- Dengue
 - Sanofi Pasteur(Hadinegoro, NEJM 2015), Takeda, Butantan
- Clostridium difficile
 - Phase III ongoing
- High dose quadrivalent influenza
 - Targets elderly
 - Addition of 2d B strain (only correct 50% of time)

Next Generation Technologies Structural Vaccinology Synthetic Biology/RNA Adjuvants/Human Immune Response

> Reverse Vaccinology MenB, GBS, GAS, E. coli, S. aureus, C. difficile

Glycoconjugation MenACWY, S. pneumo, Hib, GBS, S. aureus

Recombinant DNA Hepatitis B, Acellular Pertussis, Lyme, Human papillomavirus


Empirical Approach Diphtheria, Tetanus, Pertussis, Rabies, Influenza, Smallpox, Polio, BCG

Next challenges

Translating science to impact

Vaccines for every age

Poverty Cholera Dengue ETEC HAV HBV HEV Flu JEV Malaria Men B Parasitic infections Paratyphoid Rabies Rotavirus Salmonella S. enterica S. typhimurium	Emerging infections AIDS Anthrax Avian influenza Cholera Diphtheria Dengue Ebola EV71 Malaria SARS TB Smallpox West Nile Yersinia	Travelers Cholera Dengue ETEC Flu HAV HBV JEV Malaria Men Paratyphoid Rabies Shigella TB Typhoid fever Yellow Fever	Patients with Chronic diseases CMV Flu Fungal infections P. aeruginosa Parainfluenza RSV Staph TB	<section-header><text></text></section-header>
Shigella TB Typhoid fever	X <u>X xXX</u>			

Vaccine scorecard (Plotkin et al, NEJM 2015)

Vaccine-Preventable Diseases and Infections and Targets Currently Uncontrolled by Vaccination.*

Diseases and infections with commonly used vaccines					
Diphtheria	Polio				
Haemophilus influenzae type b	Pneumoccocus				
Hepatitis type A	Rabies				
Hepatitis type B	Rotavirus				
Human papillomavirus (HPV)	Rubella				
Influenza types A and B (seasonal)	Smallpox				
Japanese encephalitis	Tetanus				
Measles	Tickborne encephalitis				
Meningococcus	Typhoid				
Mumps	Varicella (chickenpox)				
Pertussis (whooping cough)	Yellow fever				

Diseases and infections with limited-use vaccines

Adenovirus types 4 and 7

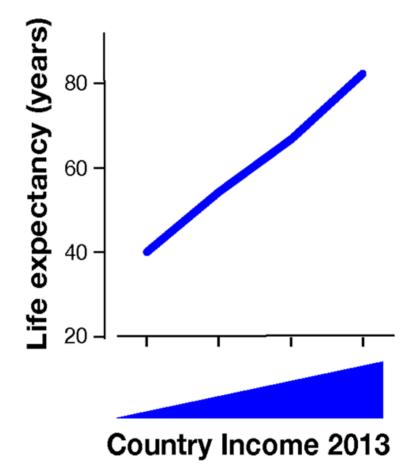
Anthrax

Diseases and infections with no vaccines or only partially effective vaccines

Campylobacter	Lyme disease		
Cancer	Malaria		
Candida	MERS		
Chikungunya	Metapneumovirus		
Chlamydia	Moraxella (for otitis)		
Clostri d'um difficil e	Neisseria gonorrhoeae		
Cryptosporidium	Norovirus		
Cytomegalovirus	Nosocomial bacteria		
Dengue	Parainfluenza		
Ebola and viral hemorrhagic fevers	Plague		
Enterovirus including EV71, EV68, CA16	Rhinovirus		
Epstein–Barr virus	RSV		

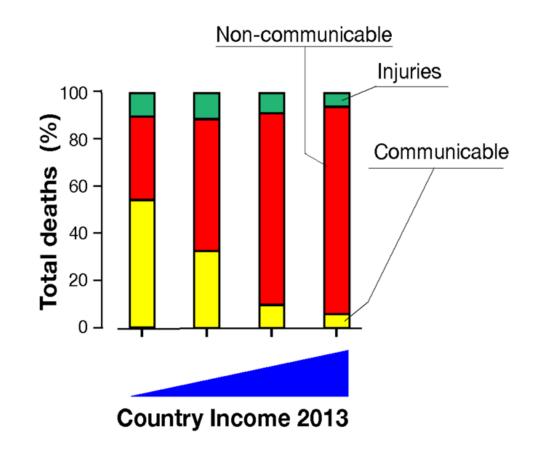
Escherichia coli	Salmonell a paratyphi		
Helicobacter pylori	SA RS		
Haemophilus influenzae, nontypable	Schistosomiasis		
Helminths (numerous)	Shigella		
Hepatitis type C	Staphylococcus		
Hepatitis type E	Tuberculosis		
Herpesvirus type 6	Strep group A		
Herpes simplex	Strep group B		
HIV-ALDS	Toxoplasmosis		
Influenza, universal	Trypanosomiasis		
Influenza, avian types H5 and H7	West Nile virus		
Leishmaniasis			

* Information is from the Foundation for Vaccine Research. MERS denotes Middle East respiratory syndrome, RSV respiratory syncytial virus, and SARS severe acute respiratory syndrome. Vaccines for some of the targets indicated above are in advanced development, but most are not.


Big Pharma

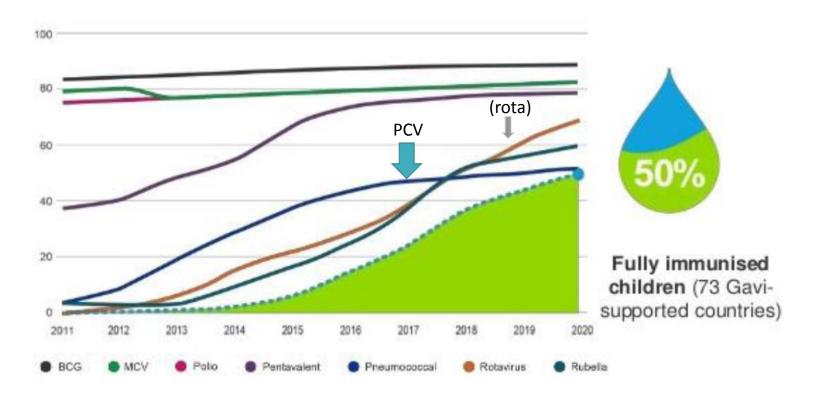
- Cost
 - \$500M less complex vaccine
 - \$1 B more complex vaccine
- Failure rate: only 7% of vaccines reaching preclinical development are licensed

Vaccines for all


In low income countries life is still very short

Vaccines have the potential for greater impact in lower income countries

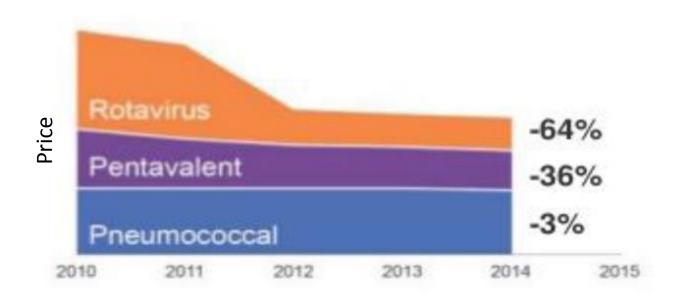
As income levels fall, infectious diseases have a greater impact on mortality.



GAVI: forecast costs and deaths averted

	2011 to 2015			201 <mark>6 to 2020</mark>		
VACCINE	Expenditure in US\$ millions	Number immunised	Deaths averted	Expenditure in US\$ millions	Number immunised	Deaths averted
PNEUMOCOCCAL	2,462	80 M	400,000	2,789	190 M	~600,000
PENTAVALENT [®]	1,710	240 M	2,600,000	1,294	300 M	~3,000,000
ROTAVIRUS	374	40 M	60,000	955	150 M	~200,000
HPV	39	1 M	20,000	347	30 M	~600,000
MEASLES SECOND DOSE AND MEASLES-RUBELLA ^{b,c}	241	200 M	300,000	343	500 M	~700,000
YELLOW FEVER	136	70 M	200,000	288	150 M	~300,000
TYPHOID	-	-	-	241	50 M	~20,000
CHOLERAd	26	-	-	89		
MENINGITIS A	202	240 M	-	85	100 M	~60,000
JAPANESE ENCEPHALITIS	5	7 M	1,000	52	70 M	~8,000
TOTAL	US\$ 5.2 billion		3.9 million	US\$ 6.5 billion		5–6 million

Immunization coverage, Gavi-supported countries

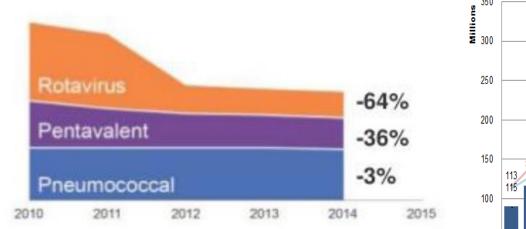


Source: Preliminary Gavi projections based on WHO/UNICEF coverage estimates and Strategic Demand

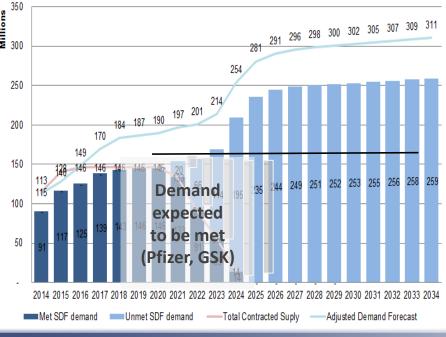
Success has a price

PCV accounts for a large % of spending

Unicef, 2015, Cost to fully immunize a child with rota, pentavalent, and pneumococcal vaccines


Pneumococcal conjugate vaccines for GAVI

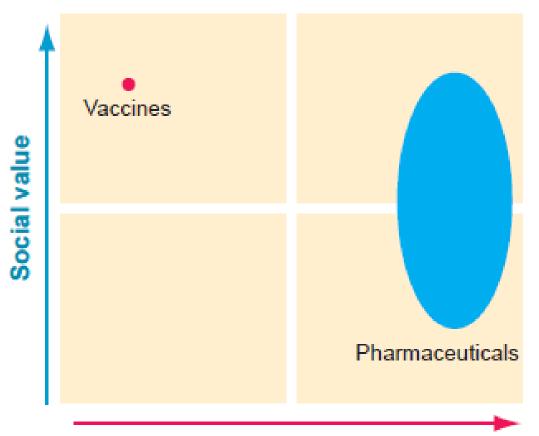
- Duopoly: Pfizer (13 valent) & GSK (10 valent)
- \$150 in developed countries, \$7 in Gavi-supported countries (Adv Market Commitment: Gavi provides monetary compensation to companies to attract vaccine supply into market)
- Gavi 2016 -2020 (projected) 6.5B USD, PCV accounts for 2.8B USD (43%)



Unmet Demand for PCV – the challenge of supply

PNEUMOCOCCAL CONJUGATE VACCINE NEEDED: A LOW COST VACCINE FOR DEVELOPING COUNTRIES

Unicef, 2015, Cost to fully immunize a child with rota, pentavalent, and pneumococcal vaccines



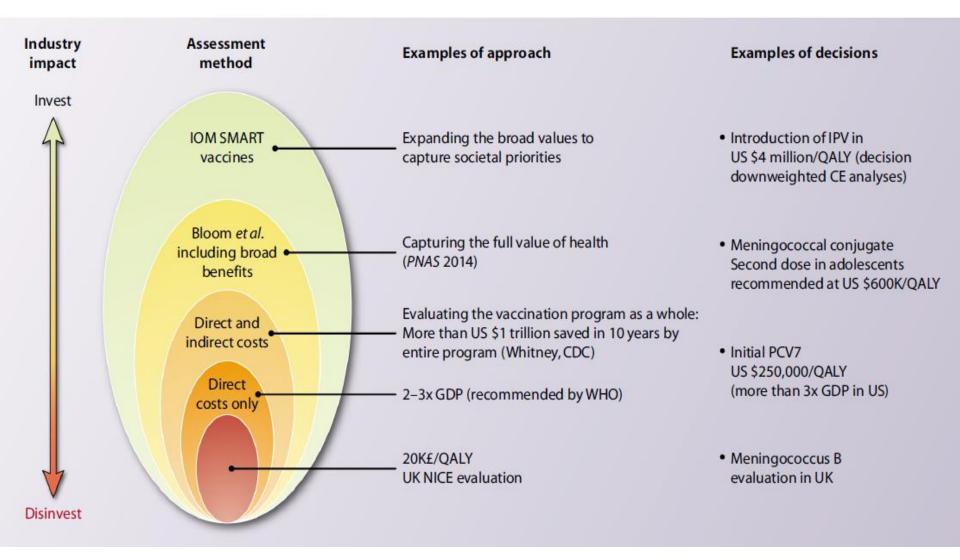
Rising to the challenge of supply

- Philanthropy
 - Bill and Melinda Gates
 - Wellcome Trust
- Governments
 - PDPs
 - Support for low cost manufacturers
- International organizations: Gavi, WHO, UNICEF, IVI
 - Policy
 - Purchase
 - Tech transfer/capacity building
- Markets
 - Alternative sources of supply from lower cost manufacturers
- New technologies

Changing the valuation of vaccines

Earning money / saving lives: Should industry, government, charities invest in vaccines?

Economic value


Why aren't vaccines correctly valued?

- Visibility: Immunization typically prevents diseases, so most people lack first-hand experience
 - How do you value a benefit you cannot see?
- Vaccine value: in a world of limited resources cost-effectiveness becomes important in decision making, but health economics not able to assign the right value to vaccines

How to properly assign value to vaccines?

Comparison of Existing Global Health Funds and Proposed Vaccine-Development Fund.*							
Variable	Global Fund to Fight AIDS, Tuberculosis and Malaria	GAVI	UNITAID Airline Tax	Proposed Vaccine Development Fund			
Focus	HIV, tuberculosis, and malaria prevention, treatment, care, and support	Purchase and delivery of childhood vaccines	Purchase of HIV, tuber- culosis, and malaria drugs	Accelerating discovery and de- velopment of new vaccines			
Source of funds	Donor governments (95%); private foundations, corporate donors, and individuals (5%)	Donor governments (80%); private foundations (17%); International Finance Facility for Immunization (2%)	Airline solidarity levy	Donor governments (50%); private foundations and industry (50%) Options: financial transactions tax, tax breaks for industry donors			
Eligibility	Middle- and low-income countries	Low-income countries	85% of funds must go to low-income countries	Scientists, institutions, and biotechnology companies engaged in vaccine discov- ery and development			
Application process	Competitive country proposal	Facilitative country proposal	Funds distributed to im- plementing agencies and NGOs on a dis- cretionary basis	Competitive proposal			
Proposal review	Country proposals reviewed by independent technical review panel; board usually follows panel's recommen- dations	Country proposals facilitated by GAVI, reviewed by in- dependent reviewers appointed by GAVI; decisions made by board	No proposals required	Proposals subject to rigorous scientific review by inde- pendent panel; board makes funding decision on the basis of scientific merit and available funds			
Features	Performance-based model em- phasizing results, transpar- ency, accountability; hands- on monitoring by local fund agents and independent auditors; does not imple- ment or fund research	Performance-based model emphasizing results, transparency, account- ability; hands-off moni- toring; does not imple- ment or fund research	Does not implement or fund research	Performance-based model em- phasizing results, transpar- ency, accountability; inde- pendent auditors will moni- tor and assess performance; will not finance phase 3 clini- cal trials or conduct research			
Governance	27-member international board representing donor and re- cipient countries, founda- tions, NGOs, industry, oth- er stakeholders; 5 mem- bers are nonvoting repre- sentatives of WHO, U.N. agencies, and World Bank	28-member international board representing do- nor and recipient coun- tries, private individuals, U.N. agencies, vaccine industry, foundations, other stakeholders	12-member executive board; 1 member is nonvoting WHO rep- resentative	Streamlined structure; medium- sized board whose majority of voting members repre- sent donors; rest of com- position to be determined			
Funds disbursed through Decen ber 31, 2014	\$25.8 billion 1-	\$7.8 billion	Approximately \$2 billion	Goal: raise \$2 billion initially			

* Information is from the Foundation for Vaccine Research. GAVI denotes Global Alliance for Vaccines and Immunization, NGO nongovern-

mental organization, WHO World Health Organization, U.N. United Nations, and UNITAID Unity and AID.

A Global Vaccine Development Fund?

Proposed cost: \$2 billion

The cost of failure?

•	F	hol	a:	est	\$8	hil	lion
			u .	CSU	ΨU		

• Deaths: 20,000

Establishing a Global Vaccine-Development Fund

Stanley A. Plotkin, M.D., Adel A.F. Mahmoud, M.D., Ph.D., and Jeremy Farrar, M.D., Ph.D.

Summary

- Vaccines are among the oldest effective medical interventions and have had a tremendous impact on mankind
- Vaccinology is vibrant and innovative and will continue to have a great impact on the society
 - Despite success in developing safe and effective vaccines, there are still diseases to overcome
- Cost-effectiveness alone undervalues vaccines, multicriteria evaluation methods are needed to capture the full benefits of vaccination
- The next great challenge will be to get these vaccines to those in greatest need, through novel funding mechanisms, lower cost production, capacity building, and sustainable implementation

IVI website: www.ivi.int Like us: https://www.facebook.com/InternationalVaccineInstitute Follow us: https://twitter.com/IVIHeadquarters Visit us: https://www.linkedin.com/company/international-vaccine-institute

