Enterovirus 71 (EV71)

Fondation Merieux Conference - Asia Pacific Vaccinology 2015

Bangkok, Thailand 30.11.2015 – 3.12.2015

K.B. Chua
Temasek Lifesciences Laboratory
1 Research Link
National University of Singapore
Singapore 117604
chuakb@tll.org.sg

Enterovirus 71 (EV71)

Electron Micrograph

Crystal Structure

Schematic Diagram

Genome Structure and Encoded Proteins of EV71

Disease and Public Health Burden due to EV71 An important emerging viral disease of children.

Besides causing HFMD.

- Non-specific febrile illness
- "Common cold"
- Exanthema
- Herpangina
- Acute pharyngitis
- Infantile pneumonitis
- Infantile diarrhoea
- Aseptic meningitis
- Acute flaccid paralysis
- Acute Encephalitis
- Acute encephalomyelitis
 +/- pulmonary oedema

Outbreaks of HFMD with neuroinvasion and fatalities.

Asia-Pacific region:

1997, 2000, 2003, 2006 - Malaysia

1998, 2000/2001 - Taiwan

1999 - Perth Australia

China:

2008: 488,955 HFMD, 126 Fatalities.

2009: 1,155,525 HFMD, 353 Fatalities.

2010: 1.7 million HFMD, 905 Fatalities.

Disease Manifestations of EV71

Dermatophilic (Coxsackievirus A16-like):

- HFMD
- Exanthemata
- Enanthem Herpangina

Neurotrophilic (Poliovirus-like):

- Neck Stiffness (Meninges)
- Acute Paresis/Flaccid Paralysis (Pyramidal nervous system)
- Ataxia, Tremor (Extra-Pyramidal nervous system)
- Acute neurogenic pulmonary oedema (Autonomic system)

Issues, Challenges and Solutions

Animal Model of EV71 Neuro-Infection, Disease and Pathology

EV71 Vaccine

What are the Current Published Animal Models?

Monkey Models: Macaca fascicularis, Rhesus

Intra-spinal Inoculation:

Hashimoto and Hagiwara.

Acta Neuropathologica 1982; 58: 125-132.

Intravenous Inoculation:

Nagata N, et al.

J Med Virol 2002; 67: 207-216.

Arita M, et al.

J Gen Virol 2005; 86: 1391-1401.

Intracerebral, Intravenous, Respiratory and Oral Routes:

Zhang Y, et al.

Laboratory Investigation 2011; 91: 1337-1350.

What are the Current Published Animal Models? Small Animals: Mouse Models

Immuno-competent mice (BALB/c, C3H/HeN, ICR): Intracranial, Intravenous, Intraperitoneal, Oral.

Yu CK, et al. J Biomed Sci 2000; 7: 523-6. Chua BH, et al. J Gen Virol 2008; 89: 1622-32. Khong WX, et al. J Virol 2012; 86: 2121-31. Wang YF, et. Al. J Biomed Sci 2014; doi:10.1186/1423-0127-21-31. (Age < 14 days, myositis, need > 10⁷ pfu/ml)

Immuno-compromised mice:

NOD/SCID, A129, AG129 mice.

Transgenic Mice (PSGL-1, SCARB2).

Liu J, et al. Arch Virol 2012; 157: 539-43. Lin YW, et al. PLoS One 2013,: 8:e57591. Fujii K, et al. PNAS 2013; 110: 14753-8.

Mouse-adaptation in newborn mice:

Intracerebral adaptation.

Intra-skeletal muscle adaptation.

Mouse-adaptation in immuno-compromised mice.

Current Published Animal Models

- Lack "Face Validity" (i.e., lack full resemblance to human symptoms). (Fulminant Pulmonary Edema)
- Lack "Construct Validity" (i.e., lack similarity to the underlying cause of the human disease). (Myositis)

None of the EV71 strains is able to replicate in in-vitro culture mouse cells

TLL mouse model of EV71 infection

EV71:TLLm and EV71:TLLmv - Strains that are able to replicate efficiently in in-vitro culture mouse cells.

Public Health Perspective

 Urgent Need for an Effective and Efficacious Vaccine to Control and Prevent Hand Foot and Mouth Diseases and associated neurological complications.

EV71 Vaccines Under Research and Development

- cDNA vaccine.
- Subunit vaccine (VP1 peptide).
- Virus-like particle (VLP)
- Inactivated enterovirus 71.
- Live attenuated enterovirus 71.

Development of Injectable Inactivated EV71 vaccines

(Based on Salk Inactivated Poliovirus Vaccine Model)

Inactivated EV71 Vaccine Development

1975 Bulgaria, Europe.

Febrile illness: 705 reported cases.

545 (77.3%) cases of aseptic meningitis

149 (21.1%) cases of paralytic disease.

44 fatalities.

(Chumakov et al., Arch Virol 1979; 60: 329-40).

Disease Burden

Outbreak of HFMD and Fatalities in China

2008: China CDC & Office of WHO in China

Cases of HFMD: 488,955

Fatalities: 126

2009: Yang et al. Virology J 2011; 8:508.

Cases of HFMD: 1,155,525

Fatalities: 353

2010: Zeng et al. J Clin Virol 2012; 53(4): 285-9.

Cases of HFMD: 1.7 million

Severe neurological complication: 27,000

Fatalities: 905

Development of Injectable Inactivated EV71 vaccines

(based on Salk Inactivated Poliovirus Vaccine Model)

Parental (Injectable) Inactivated EV71 vaccines at various stages of development and clinical trails:

- Beijing Vigoo, China National Biotech Group (China), EV71-C4 strain.
- Sinovac (China), EV71-C4 strain.
- Institute of Medical Biology (CAMS) (China), EV71-C4 strain.
- National Health Research Institute (Taiwan), EV71-B4 strain
- Inviragen (Singapore), EV71-B2 strain.

Phase III Clinical Trials (Summary)

Vaccine Producer	Beijing Vigoo Biological	Sinovac Biotech	Institute of Medical Biology, CAMS
Total Population	10,245	10,007	12,000
Age (month)	6 - 35	6 - 35	6 -71
Dosing (unit –U)	320	400	100
Immunization Schedule (day)	0, 28	0, 28	0, 28
Adjuvant	Alum	Alum	Alum
Efficacy (against EV71-associated HFMD)	90.0%	94.8%	97.3% - 97.4%

Development of Live Attenuated Oral EV71 Vaccine (Based on Oral SABIN Poliovirus Vaccine Model)

Development of Live Attenuated Oral EV71 Vaccine

(Based on Oral SABIN Poliovirus Vaccine Model)

Hashimato I. and Hagiwara A.

J. gen. Virol. (1982), 64, 499-502. Printed in Great Britain

499

Key words: enterovirus/virulence/temperature-sensitive mutant/fingerprinting

Isolation of a Temperature-sensitive Strain of Enterovirus 71 with Reduced Neurovirulence for Monkeys

JOURNAL OF VIROLOGY, Sept. 2007, p. 9386-9395 0022-538X/07/\$08.00+0 | doi:10.1128/JVI.02856-06 Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Vol. 81, No. 17

An Attenuated Strain of Enterovirus 71 Belonging to Genotype A Showed a Broad Spectrum of Antigenicity with Attenuated Neurovirulence in Cynomolgus Monkeys[∇]

Minetaro Arita, 14 Noriyo Nagata, 2 Naoko Iwata, 2 Yasushi Ami, 3 Yuriko Suzaki, 3 Katsumi Mizuta, 4 Takuya Iwasaki, 5 Tetsutaro Sata, 2 Takaji Wakita, 1 and Hiroyuki Shimizu 1

Development of Oral Combined Live Attenuated Vaccine against HFMD

"18 Years (1998 – 2015) JOURNEY"

HFMD in Malaysia

May 1997; Sibu, Sarawak.

July 1997; FT, Peninsular Malaysia.

Number of cases of HFMD?

41 deaths reported (29 Sarawak, 12 Peninsular Malaysia).

Virus: EV71, CA16.

HFMD in Taiwan (1998)

129,106 reported cases (estimated 10% of total cases).

405 hospitalised for severe disease (80% <= 5 years old).

78 fatalities.

Serious complications: Encephalitis, Encephalitis and pulmonary oedema or haemorrhage, Aseptic meningitis, Myocarditis with encephalitis, Acute flaccid paralysis.

65 (83%) died of Encephalitis with pulmonary oedema or haemorrahage.

Challenges of EV71 Vaccine

Challenges inherent in the viruses causing HFMD:

- HFMD due to a number of enteroviruses, especially CA16 and EV71.
- Genetic and Antigenic Diversity of EV71.
- EV71 undergoes "rapid" Genetic Mutation and Antigenic Drift in the last 16 years.

Challenges inherent in inactivated vaccine:

- Need for parental administration.
- High cost.
- Need for adjuvant with its associated side-effects.
- Reduced "Robustness/Quality" of neutralizing antibodies due to structural changes during the process of inactivation.
- Do not induce gut immunity. Thus, do not prevent silent EV71 infections in intestinal mucosa that lead to transient carriers and shedding of the virus.
- Public Health Perspective ? Feasibility of Mass Vaccination

Development of Live Attenuated Oral EV71 Vaccine

(Based on Oral SABIN Poliovirus Vaccine Model)

Phenotypic and Genetic STABILITY and REVERSION

Searching for the STABLE TEMPERATURE SENSITIVE EV71 Strain

Mutation Rates 3×10^{-3} to 2×10^{-6} (1.6 x 10⁻⁴)

Enterovirus Entry, Replication and Morphogenesis

Genome Replication:

5'NC – "cloverleaf", 3'NC 2BC, 2B, 2C; 3AB, 3A, 3B; 3CD, 3C, 3D Host cellular protein (Reticulon 3)

Translation (Viral Protein Synthesis):

5'NC-IRES, 2A;

host cellular protein initiation complex, host cellular ribosomes

Attachment, Uncoating and Assembly:

VP1, VP2, VP3; VP1, VP2, VP3, VP4; VP0, VP1, VP3, VPg, 2C, RNA

Candidate Attenuated EV71 strains: EV71:TLLα, EV71:TLLβ or EV71:TLLγ strains

Candidate Attenuated EV71 strains: EV71:TLLα or EV71:TLLβ strains

Phenotypic Stability

Genetic Stability

EV71:TLLβP20

[Stable Cold-Adapted Temperature-Sensitive/Conditional Lethal]

(Patent: PCT/SG2013/000027)

Safety and Immunogenicity: Monkey's Study

1 monkey: normal control

3 monkeys (2889M, 0791M and 2891F): 10^7 CCID₅₀ of EV71: TLL β P20

3 monkeys (2890M, 2202F and 2247M): 10^8 CCID₅₀ of EV71: TLL β P20

Need to Extend Protection against: other Genotypes of EV71 and CA16

Chimeric Enteroviruses

EV71:TLLeC5 (PCT/SG2015/050106)

TLLeCA16 (PCT/SG2015/050106)

Final Candidate Vaccine

An Oral Combined Live Attenuated Vaccine (EV71:TLLβP20, EV71:TLLeC5, and TLLeCA16) against Hand Foot and Mouth Disease due to EV71 and CA16

Future Prospect

Formalin-Inactivated EV71 Vaccine

Implementation of a 2-dose regimen in China with? a third booster dose.

Issues Need to be Considered:

- Multinational Efficacy Trials.
- Harmonization and Standardization of Antigen (Virus Strain).
- Co-ordinated Quality Control Reagents and Immunoassays.
- Co-administration of EV71 vaccine with the commercial paediatric pentavalent vaccine.
- A global surveillance: Circulating genotypes/subgenotypes or new serotype emerging from EV71 and CA16.
- HFMD due to CA16 virus.

Future Prospect

An Oral Combined Live Attenuated Vaccine (EV71:TLLβP20, EV71:TLLeC5, and TLLeCA16) against Hand Foot and Mouth Disease due to EV71 and CA16

Challenges of EV71 Vaccine

Challenges inherent in the viruses causing HFMD:

- HFMD due to a number of enteroviruses, especially CA16 and EV71.
- Genetic and Antigenic Diversity of EV71.
- EV71 undergoes "rapid" Genetic Mutation and Antigenic Drift in the last 18 years.

Challenges inherent in inactivated vaccine:

- Need for parental administration.
- High cost.
- Need for adjuvant with its associated side-effects.
- Reduced "Robustness/Quality" of neutralizing antibodies due to structural changes during the process of inactivation.
- Do not induce gut immunity. Thus, do not prevent silent EV71 infections in intestinal mucosa that lead to transient carriers and shedding of the virus.
- Public Health Perspective ? Feasibility of Mass Vaccination

Acknowledgement

Virologists and Molecular Biologists

Thank You

