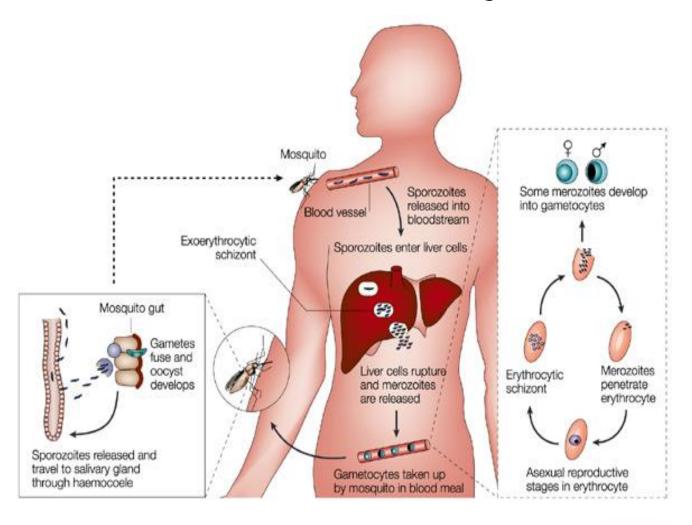

Defining targets and correlates associated with sterile protection in experimentally vaccinated humans

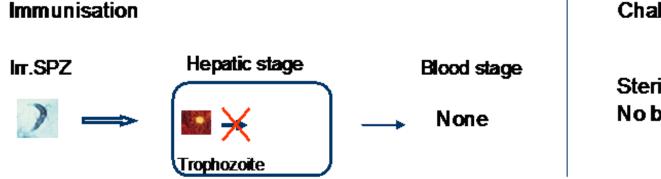
Asian Pacific Vaccinology Meeting

Laurent Rénia

Pathogen Immunobiology laboratory

Malaria: the present situation

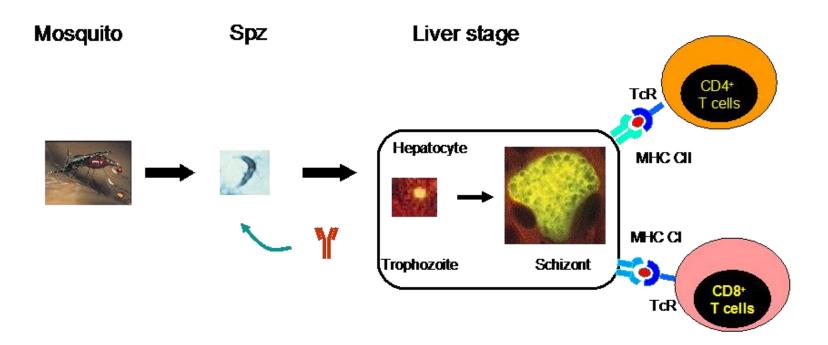



Plasmodium life cycle

Nature Reviews | Immunology

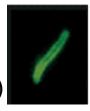
4 + 1 species infecting humans: P. falciparum, P. vivax, P. ovale, P. malariae, P. knowlesi

Gold Standard Vaccine: the irradiated Sporozoite

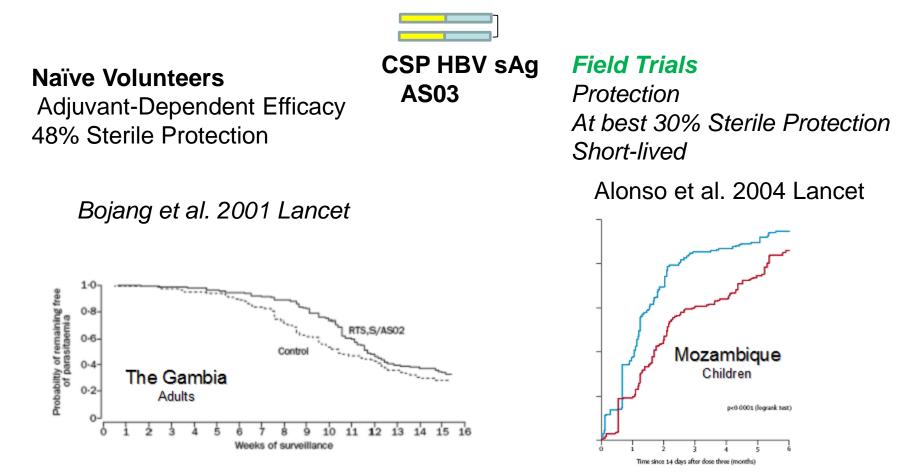

Challenge with SPZ

Sterile protection No blood parasites

Birds, mice, rats, monkeys, Humans


UV irradiation : Russell and Mulligan , J Mal Inst India, 1942 Richards, Nature, 1966 X-ray irradiation : Nussenzweig et al, Nature, 1967 Clyde et al, Am J Med Sci, 1973; Rieckmann et al, Trans R Soc Hyg, 1974

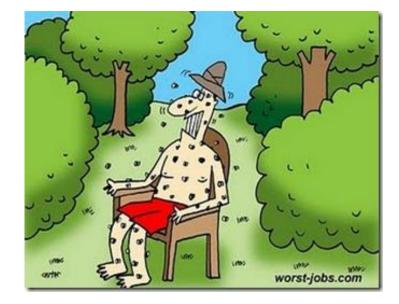
 Stage specific protection: protection only against pre-erythrocytic parasites (Sporozoites + Liver stage) Immune responses and pre-erythrocytic stage immunity in mice



- . Antibodies
- . Protective effector CD8+ T and/or CD4+ T cells

. Major antigen recognized : the circumsporozoite (CSP)

The RTS, S Vaccine: a CSP-based vaccine


An evolving concept: Protection against disease : 28-55%

2015: Protection is strain-specific : *Neafsey et al., New Engl J Med, in press*

Malaria Vaccine

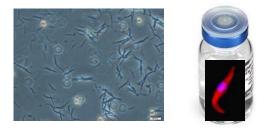
Whole Parasite Vaccines

Irradiated sporozoites through mosquito bites requires 1000 infective mosquito bites over a 6 month period

No subunit vaccines have reached Efficacy > 50%

Why Is there no efficient sub-unit malaria vaccine?

- Escape mechanisms developed by parasites
- Ag polymorphism, immunosuppression, enhancing antibodies...
- Do we have identified the right antigen (s)? *P. falciparum* genome : 5000 malaria genes



What immune mechanisms to target
 Absence of correlates of protection *in vitro* and *in vivo*

The irradiated Sporozoite vaccine in humans Sterile frozen /thawed irradiated sporozoites

Protection 0%

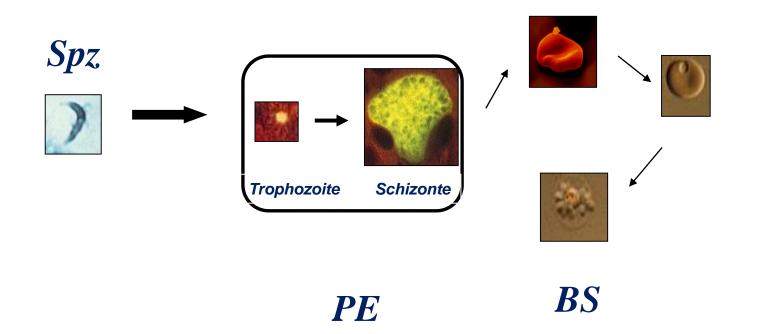
Intramuscular injections: 4 x 135,000:

Live Attenuated Malaria Vaccine **Designed to Protect Through Hepatic CD8⁺ T Cell Immunity**

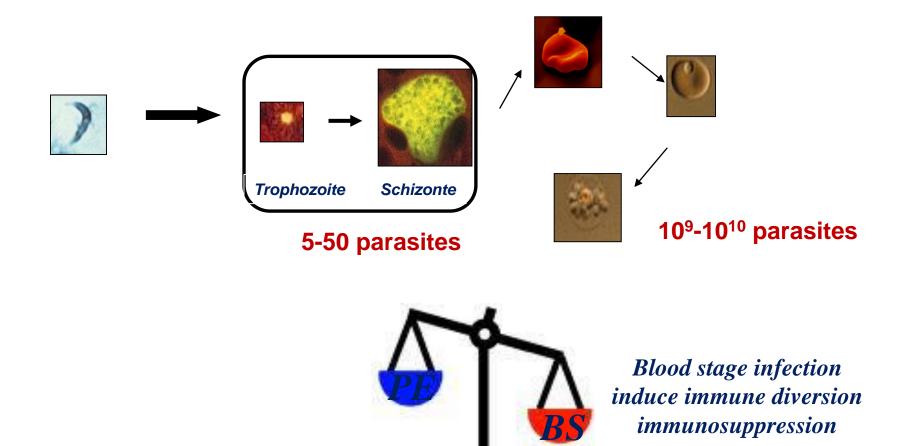
J. E. Epstein, ¹* K. Tewari, ²* K. E. Lyke, ³* B. K. L. Sim, ^{4,5} P. F. Billingsley, ⁴ M. B. Laurens, ^{3,6} j. c. cpstein, T. K. Lewart, T. K. Lyke, T. B. K. L. Sim, "P. F. Billingsley," M. B. Laurens, "A. Gunasekera,⁴ S. Chakravarty,⁴ E. R. James,⁴ M. Sedegah, "A. Richman,⁴ S. Velmurugan,⁴ S. Reyes,¹ M. Li,⁵ K. Tucker,⁷ A. Ahumada,^{4,5} A. J. Ruben,⁴ T. Li,⁴ R. Stafford,^{4,5} A. G. Eappen,⁴ C. Tamminga,¹ J. W. Bennett,⁵ C. F. Ockenhouse,⁸ J. R. Murphy,⁸ J. Komisar,⁹ N. Thomas,¹ M. Loyexky,⁴ A. Birkett,⁹ C. V. Plowe,^{3,6} C. Loucq,⁹ R. Edelman,³ T. L. Richie,¹ R. A. Seder,²⁺[‡] S. L. Hoffman,^{4,5}^{‡‡}

Science, 2011

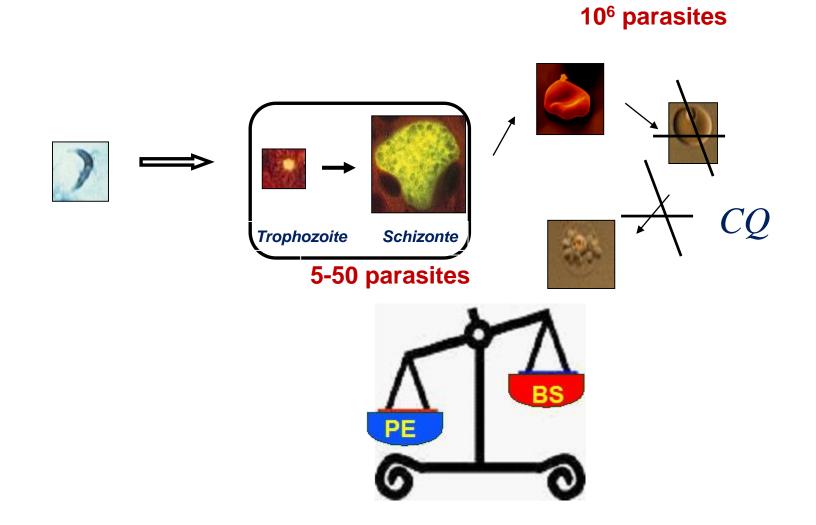
Intravenous injections: 5 x 135,000

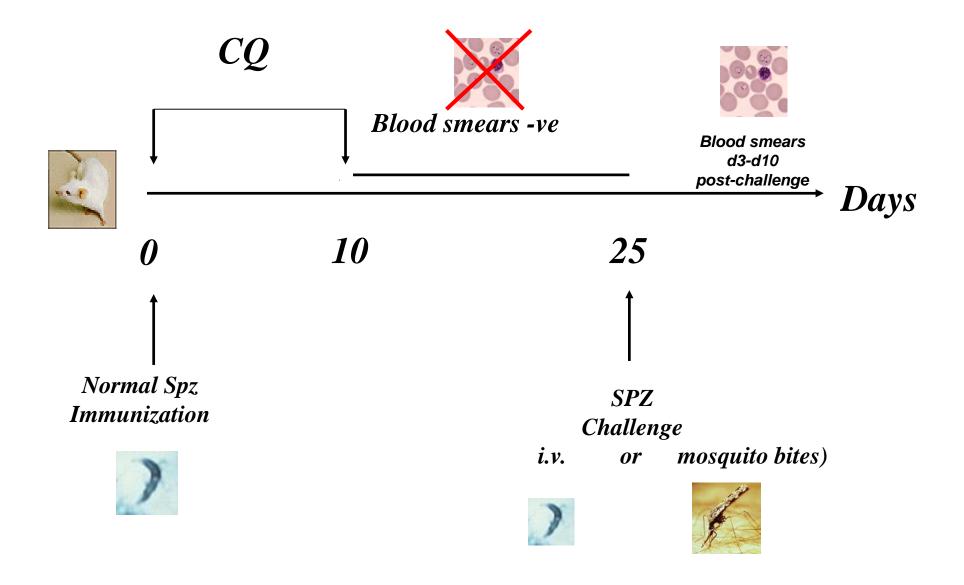

Protection Against Malaria by Intravenous Immunization with a Nonreplicating Sporozoite Vaccine

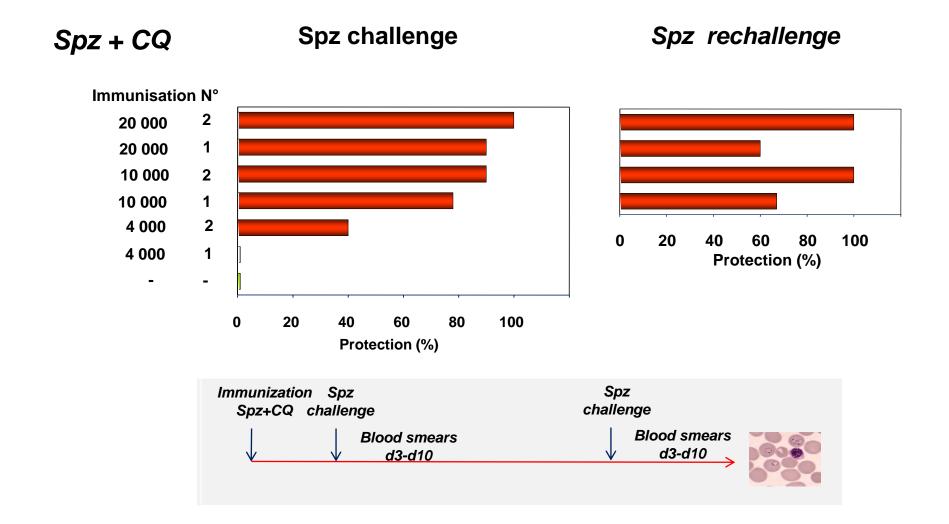
Robert A. Seder.^{1*}† Lee-Jah Chang,^{1*} Mary E. Enama,¹ Kathryn L. Zephir, ¹ Uzma N. Sarwar, ¹ Ingelise J. Gordon, ¹ LaSonji A. Holman,¹ Eric R. James, ¹ Peter F. Billingsley, ² Anusha Gunasekera, ² Adam Richman,² Sumana Chakravary, ² Anita Manoj, ² Soundarapandian Velmurugan, ¹ MingLin Li,³ Adam J. Ruben, ¹ Tao Li, ² Abraham G. Eappen, ² Richard E. Stafford, ³ Sarah H. Plummer, ¹ Cynthia S. Hendel, ¹ Laura Novik, ¹ Pamela J.M. Costher, ¹ Floreliz H. Mendoza, ³ Jamie G. Saunders, ¹ Martha C. Nason, ¹ Jason H. Richardson,⁵ Jittawadee Murphy, ¹ Silas A. Davidson,⁵ Thomas L. Richie, ¹ Martha Sedegah, ² Awalludin Sutamjhardja,² Gary A. Fahle, ¹ Kirsten E, ¹ Lyke, ¹ Matthew B, Laurens,¹⁰ Mario Roederer, ¹ Kavita Tewari, ³ Judith E. Epstein,⁶ B. Kim Lee Sim,²³ Julie E. Ledgerwood, ¹ Barney ³ Senam, ¹ and Stephen L. Hoffman,²⁺ ⁴ the VRC 312 Study ¹ Teams Team§


Protection: 100%

Science, 2013,


Immunisation with live sporozoites Targeting the whole pre-erythrocytic stage


Immunity during natural infection focus of blood stage


Chloroquine has no effect on liver stage and allows expression of liver and early stage antigen repertoires

Immunization protocol with live sporozoites

Induction of long lasting sterile protection

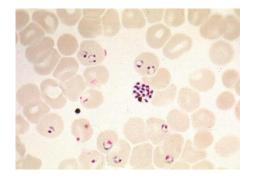
The NEW ENGLAND JOURNAL of MEDICINE

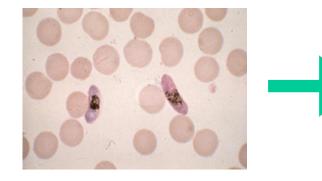
ORIGINAL ARTICLE

Protection against a Malaria Challenge by Sporozoite Inoculation

Meta Roestenberg, M.D., Matthew McCall, M.D., Joost Hopman, M.D., Jorien Wiersma, Adrian J.F. Luty, Ph.D., Geert Jan van Gemert, B.Sc., Marga van de Vegte-Bolmer, B.Sc., Ben van Schaijk, M.Sc., Karina Teelen, Theo Arens, Lopke Spaarman, B.Sc., Quirijn de Mast, M.D., Will Roeffen, Ph.D., Georges Snounou, Ph.D., Laurent Rénia, Ph.D., Andre van der Ven, M.D., Cornelus C. Hermsen, Ph.D., and Robert Sauerwein, M.D.

2009


Pr Robert Sauerwein

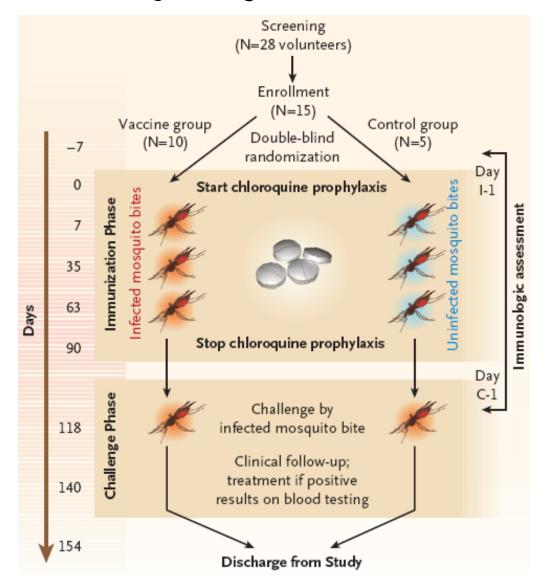

Department of Medical Microbiology Radboud University Nijmegen Medical Centre Nijmegen The Netherlands

Experimental Human Infection

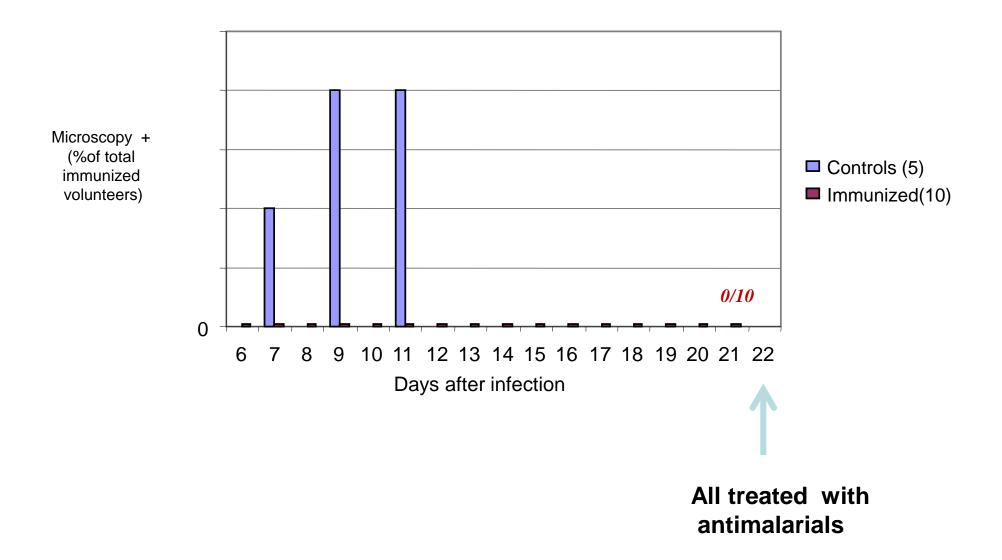
Production of *P falciparum* NF54 gametocytes

Infect volunteers Exposure to 5 infected mosquitoes Follow-up from day 4 -21 - parasitaemia : 2 times/ day - clinical symptoms - routine clinical lab

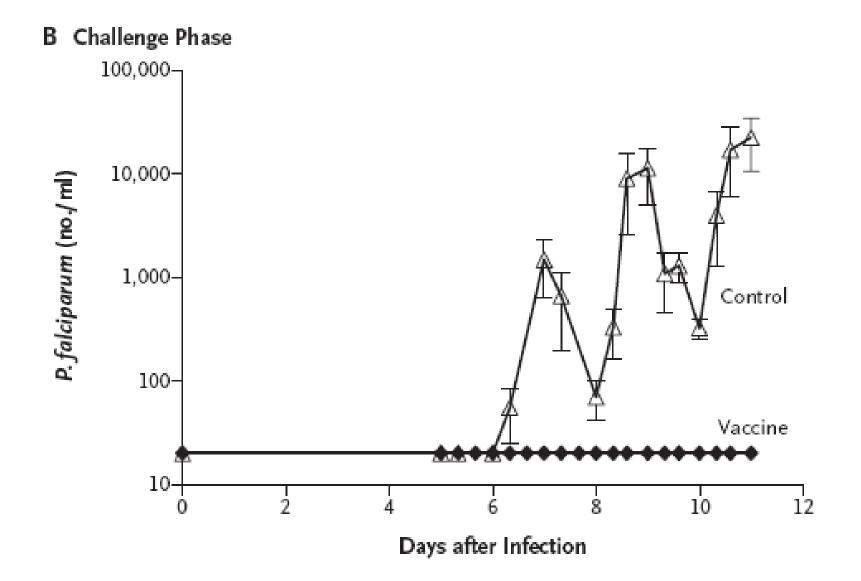
Treatment with antimalarial drug


The happy volunteers

Artificial infection



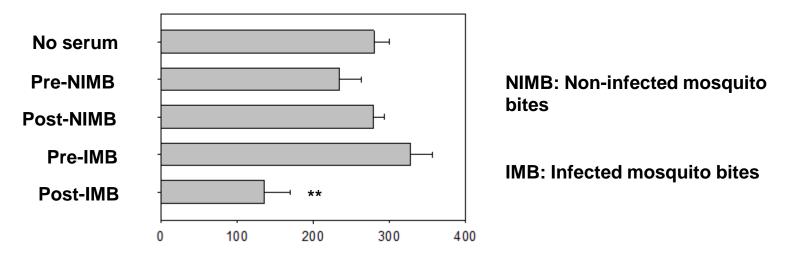
Study design and enrollment



Roestenberg et al., New Eng J Med, 2009

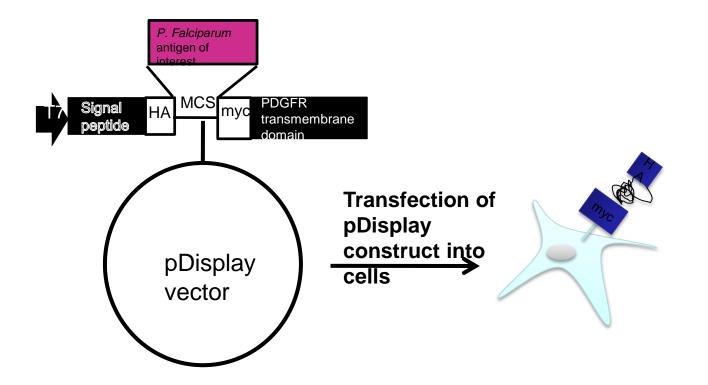
Volunteers with positive microscopy after challenge

Parasitaemia (qPCR) after challenge


Discussion

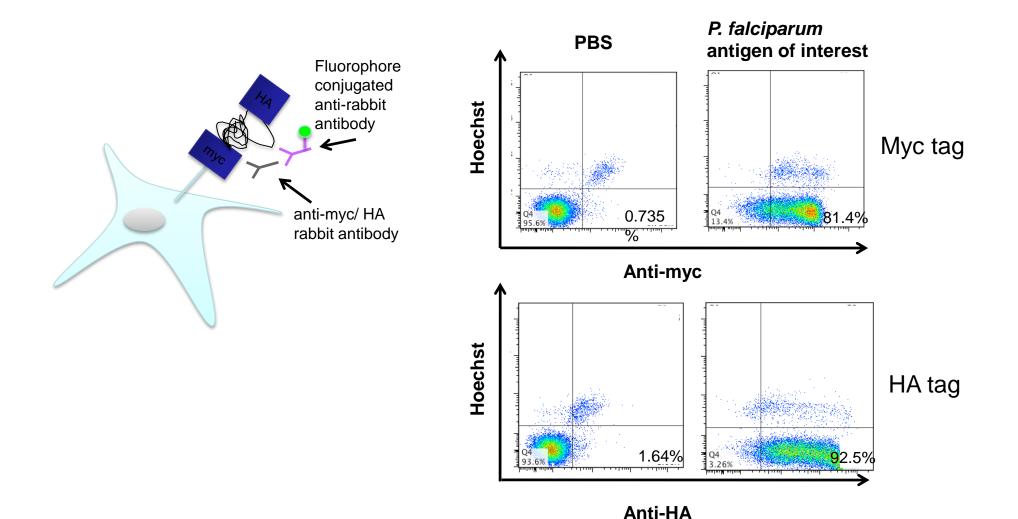
- Immunization with total of 45 infected mosquitoes (450-2250 sporozoites) induces 100% protection against parasitemia after a homologous challenge.
- Immunization shows progressive reduction of parasitemia with each infection suggestive of induction of immunity.
- Rechallenge after 29 months (~2 years and half): <u>4/6</u> vaccinees still completely protected (Roestenberg et al., Lancet , 2011)
- . Immunity mainly against liver stage parasite (Bijker et al., PNAS, 2013)
- IMMUNE RESPONSES
 Associated with polyfunctional effector memory CD4+ T cells expressing IFN-g, TNF-a. IL-2 specific for blood stage antigens
- Role of antibodies ?
- > Antigens?

Sera from protected volunteers inhibit *Plasmodium* sporozoite invasion of primary human hepatocytes



•"Immunized" sera from IMB individuals have antibodies against all stages

Number of parasites in hepatocytes (mean±SD)


 Immunized sera did not inhibit blood stage parasite invasion of naïve erythrocytes *P. falciparum* pDisplay antigen library A novel system for screening serum antibodies

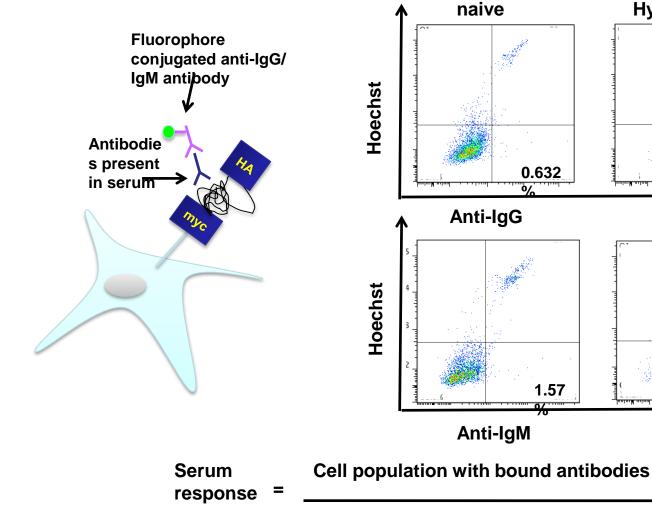
• Selected a panel of more 50 selected *P. falciparum* proteins that were expressed during the sporozoite stage to be cloned into pDisplay vector

• Created a library of transfected cell lines that each express a different *P. falciparum* antigen of interest

Cells that express *Plasmodium* antigen can be detected via the myc or HA tag

Utilization of cell surface expressed *P. falciparum* antigen library towards detection of sera IgG/ IgM antibodies that recognize the antigen of interest

Hyper-immune


50.2%

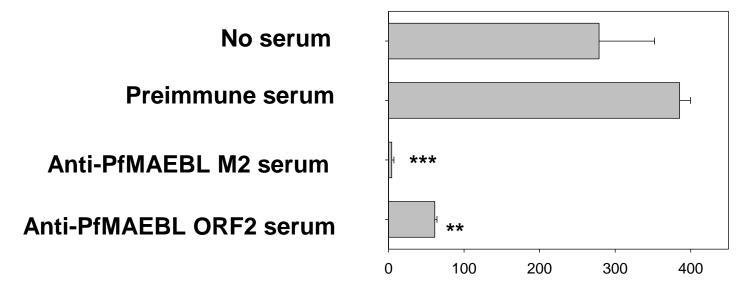
71.7%

X 100%

lgG

lgM

Cell population that is positively transfected


Immunized individuals exhibit a varied and broad antibody response

Gene name	plasmodb	Amino acid position	Infectious bites									Non-infectious bites				
			1	2	3	4	5	6	7	8	9	10	11	12	13	14
EXP1	PF11_0224	28-77														
EXP1	PF11_0224	102-162														
HPTM1	PFI1590c	383-802														
НРТМ3	PFF1315w	1137-1713														
LSA1	PF10_0356	650-1162														
LSA3	PFB0915w	84-590														
LSA3	PFB0915w	559-1040														
LSA3	PFB0915w	1001-1429														
maebl	PF11_0486	653-1005														
maebl	PF11_0486	958-1249														
MSP2	PFB0300c	114-272														
MSP3	PF10_0345	29-354														
MSP7	MAL13P1.174	28-281														
MTRAP	Pf10_0281	292-424														
PALPF3	MAL13P1.206	311-652														
PF38	PFE0395c	34-320														
PF92	PF13_0338	34-484														
RHOPH3	PFI0265c	16-505														
TRAP	PF13_0201	28-183														
TRAP	PF13_0201	204-499														
SEA	PF3D7_1021800	2431-3249														

Serum response >10%

Antibodies against *P. falciparum* MAEBL block sporozoite development in primary human hepatocytes

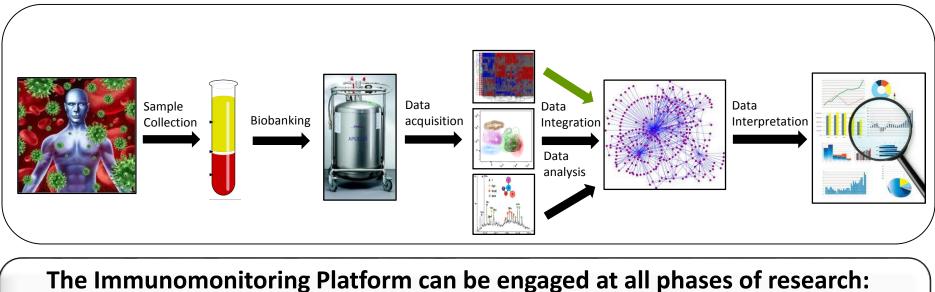
Liver forms (Mean ± SD)

Conclusions

• Humoral immunity has a functional role in protection during live sporozoite inoculation under drug prophylaxis

• Developed a novel cell surface expressed *P. falciparum* antigen library that can be applied towards serum screening

• A broad and diverse antibody repertoire was induced in protected individuals \rightarrow may be a pre-requisite for achieving significant protection


• Three antigens (PfMAEBL, TRAP, PfSEA-1) were highly recognized

•Demonstrated that anti-PfMAEBL antibodies play a role in antibody neutralization of pathogen \rightarrow potential vaccine targets

• Whole parasite vaccines or subunit vaccines that utilize a broader antigenic repertoire may be the way to go in future

Clinical Immunomonitoring Platform

PRECLINICAL STUDIES CLINICAL TRIAL EARLY DISCOVERY (In rodents and NHPs) ASSESSMENT

Potential Applications of the Immunomonitoring Platform:

Biomarker Discovery

Vaccine Assessment

Drug-induced Immune Profiling

Acknowledgements

SIgN

Kaitian Peng Anne Charlotte Gruner Wu Ying Ying Teresa Arechevala Li Jin Jin Rossarin Suwanarusk Chia Wanni Alice Ong + members of LR group

Flow cytometry facility

NTU Peter Preiser Anthony Siau

Radboud University, Netherlands

Robert Sauerwein

INSERM U945, France

Georges Snounou Dominique Mazier Jean-Francois Franetich

Thank you for your attention!

www.sign.a-star.edu.sg

renia_laurent@immunol.a-star.edu.sg