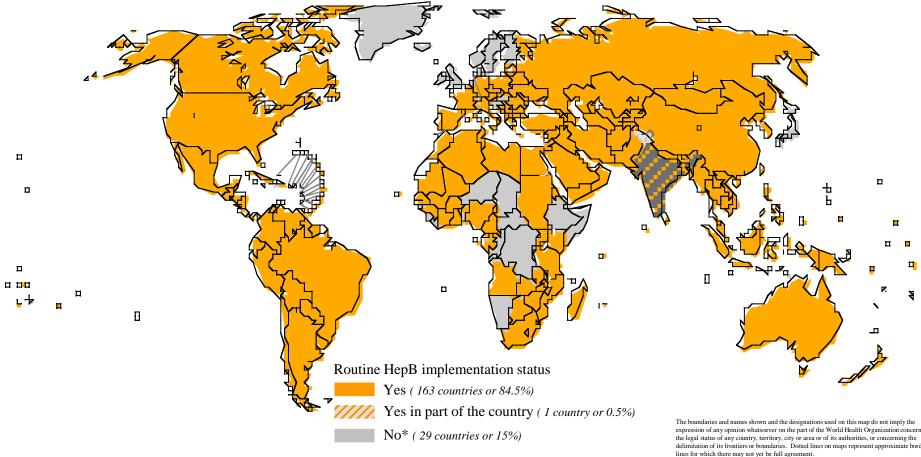

National University Health System

Yong Loo Lin School of Medicine • National University Hospital • Faculty of Dentistry

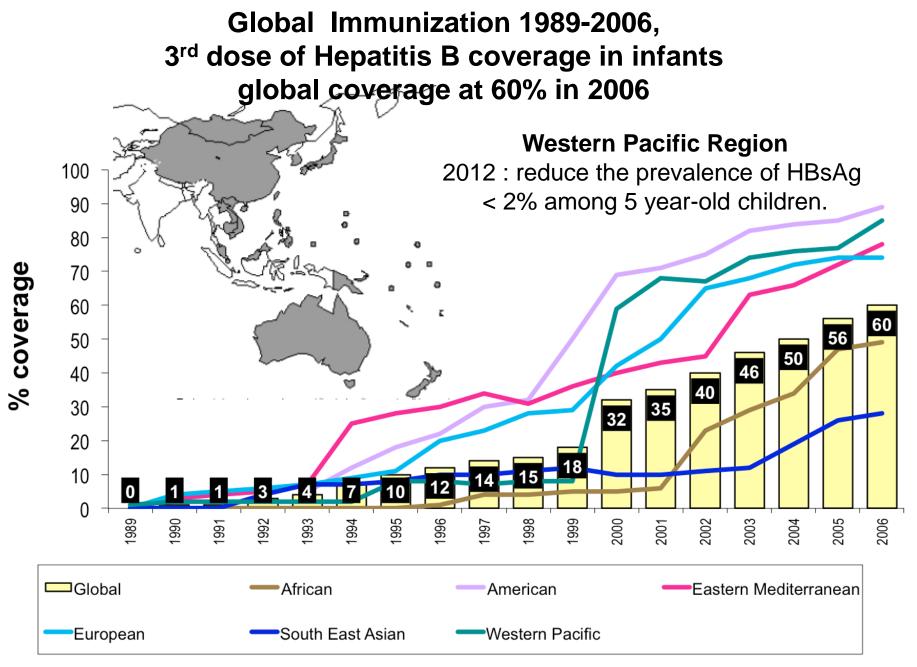
Geographic Distribution of Chonic HBV Infection and Incidence of Hepatocellular Carcinoma (HCC)

World prevalence of chronic HBV

HBs Ag + prevalence


Annual incidence of primary HCC

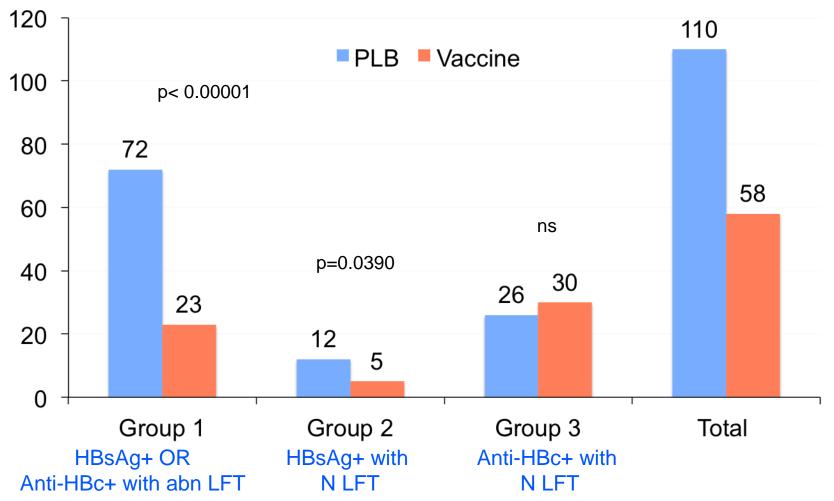
Cases/100,000 population


1-3
 3-10
 10-150
 poorly documented

A significant correlation between the prevalence of HBV and incidence of hepatocellular carcinoma

Countries Using HepB Vaccine in National Immunization Schedule, 2006

* 4 countries use HepB vaccine among adolescents

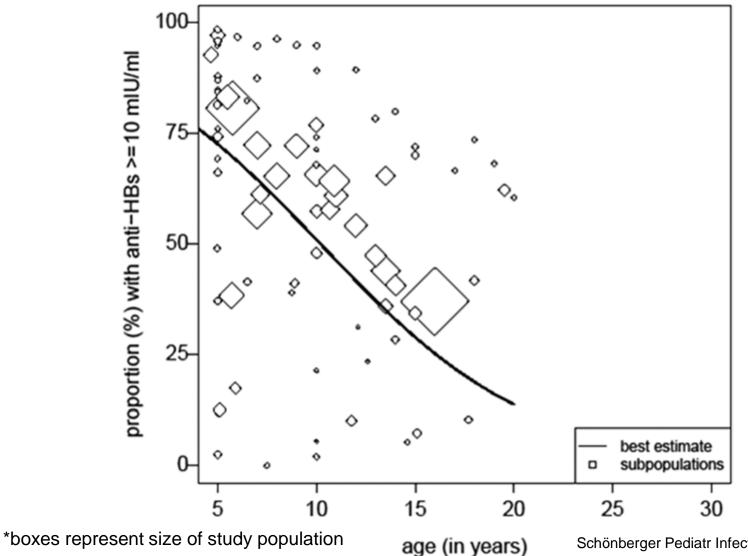

Impact of Immunisation on Hepatitis B Prevalence in Selected Populations

Country	Age of subgroup studied	HBsAg prevalence pre-EPI (%)	HBsAg prevalence post-EPI (%)
Thailand	<18 Years ¹	3.4	0.7
Taiwan	6 years ² 15 years ³	10.5 20.3	1.7 3.4
Singapore	5–9 years ⁴	5.7	0
Korea	<20 years ⁵	7–9	2.1 (male) 2.7 (female)
	40 years ⁵	7–9	5.8 (male) 4.3 (female

1.Poovorawan *et al. Vaccine* 2001; **19**:943–949 2.Lin *et al. J Med Virology* 2003; **69**:471–474 3.Huang KY and Lin SR. *Vaccine* 2000; **18**:S35–38 4.James L *et al. Singapore Med. J.* 2001; **42**(9):420–422 5.Lee *et al. J. Korean Med. Sci.* 2002; **17**:457–62

RCT of HBV vaccine in homosexual men (n=1402)

p< 0.00001

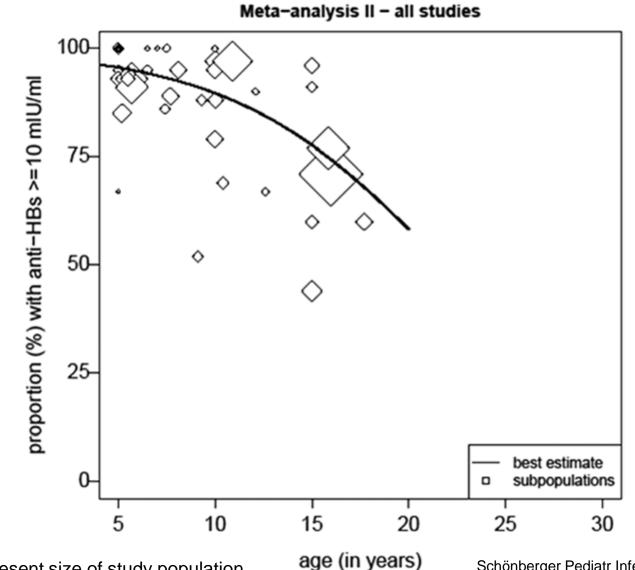


11 Vaccine recipients became HBsAg+ - all but one had anti-HBs<10 IU/mI

Francis, Annals of Internal Medicine, 19S2;97:362-366

Meta-analysis of post vaccine studies: declining anti-HBs over time

Proportions of anti-HBs >=10 mlU/ml years after primary vaccination

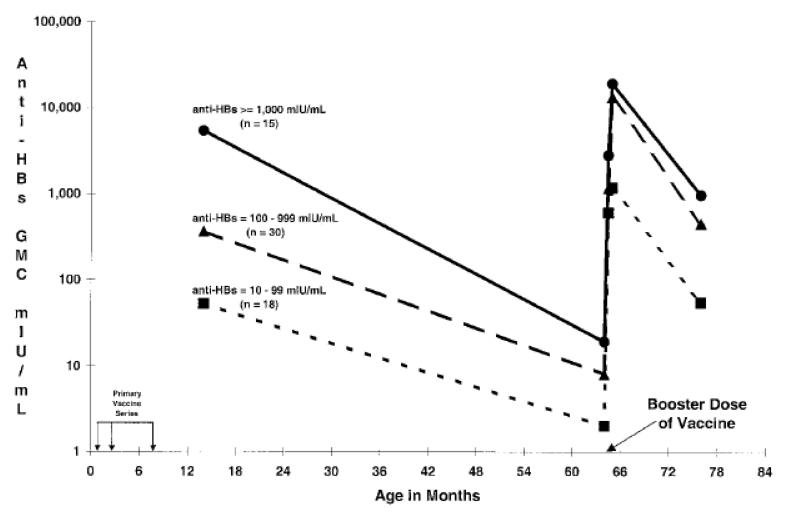


Schönberger Pediatr Infect Dis J 2013;32: 307–313

Determinants Influencing the Decrease of Anti-HBs 5-20 Years After the Primary Vaccination

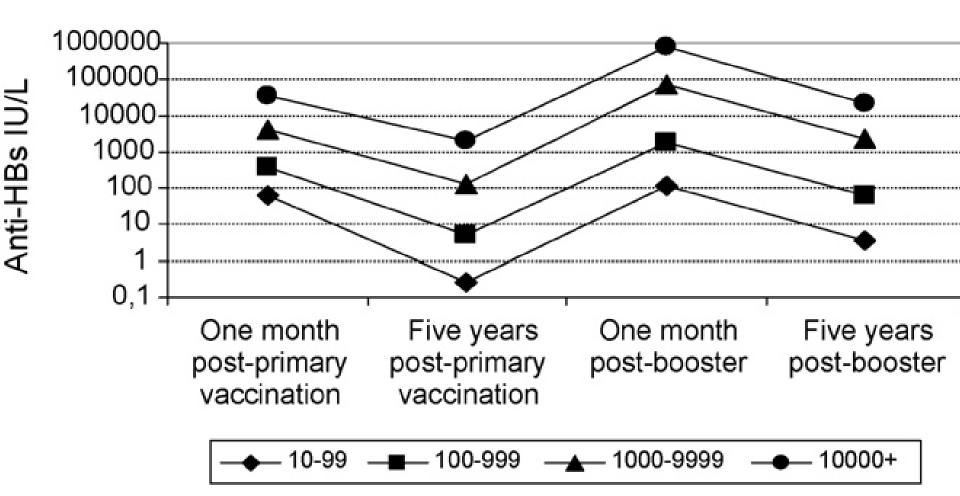
Factors With a Potential Influence	Values	n	Multivariate (adjusted)			
			OR	95% CI		
Age at follow-up	Metric variable	28329	0.84	[0.82; 0.85]		
Mothers HBsAg carrier status*	Positive	2142	2.37	[1.11; 5.08]		
Dosage of infancy vaccination (compared to present recommendation)	Lower dose	1021	0.14	[0.06; 0.30]		
Vaccination schedule of infancy vaccination	Gap time between last and preceding dose <6 mo	3867	0.44	[0.22; 0.86]		

Response to HBV booster in patients who had anti-HBs≤10 IU/mI


*boxes represent size of study population

Schönberger Pediatr Infect Dis J 2013;32: 307–313

Determinants Influencing the Response to Booster Vaccination in Children With Anti-HBs < 10 mIU/mL 5-17.7 Years After the Primary Vaccination


Factors With a Potential Influence	Values	n		ultivariate adjusted)
			OR	95% CI
Age at follow-up	Metric variable	3235	0.91	[0.85; 0.98]
Dosage of infancy vaccination (compared to present recommendation)	Lower dose	260	0.20	[0.10; 0.38]

Kinetics of response to HBV booster in children

Williams, Pediatr Infect Dis J, 2003;22:157-63

Response to HBV booster vaccine

Gilca, Vaccine 2009;27:6048-6053

But do we need boosters?

Definitions of HBV infection in vaccinees

HBV breakthrough infection:

• At least two consecutive serum specimens positive for hepatitis B core antigen (anti-HBc)

HBV chronic carriers:

 At least two consecutive serum specimens that were positive for hepatitis B surface antigen (HBsAg).

Meta analysis of protection in HBV vaccine studies, stratum 1: 5 years FU

			Vaccine	Control		Incidence	Incidence
Study or Subgroup	Incidence	SE	Total	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.2.1 Stratum 1							
But 2008	0	0.0129728	104	0	0.4%	0.00 [-0.03, 0.03]	
But 2008	0	0.0129728	104	0	0.4%	0.00 [-0.03, 0.03]	
Chadha 2000	0	0.0612909	18	0	0.0%	0.00 [-0.12, 0.12]	×
Durlach 2003	0	0.0047616	292	0	2.9%	0.00 [-0.01, 0.01]	+
Gilca 2008	0	0.0037021	377	0	4.7%	0.00 [-0.01, 0.01]	+
Goh 1995	0.0041667	0.004158	240	0	3.8%	0.00 [-0.00, 0.01]	-
Lai 1993	0	0.0126254	107	0	0.4%	0.00 [-0.02, 0.02]	
Lai 1993	0	0.0127391	106	0	0.4%	0.00 [-0.02, 0.02]	
Mintai 1993	0.0947368	0.0300459	95	0	0.1%	0.09 [0.04, 0.15]	2
Wainwright 1989	0.00253	0.0012634	1581	0	40.7%	0.00 [0.00, 0.01]	
Yuen 1999	0	0.0135963	99	0	0.4%	0.00 [-0.03, 0.03]	
Yuen 1999	0	0.0129728	104	0	0.4%	0.00 [-0.03, 0.03]	
Zhang 1993b	0.0947368	0.0300459	95	0	0.1%	0.09 [0.04, 0.15]	
Subtotal (95% CI)			3322	0	54.5%	0.002 [0.000, 0.005]	
Heterogeneity: Chi ² =	19.96, df = 12	2 (P = 0.07);	l² = 40%				

Test for overall effect: Z = 2.22 (P = 0.03)

Stratum	Study	Fu (year)	Design	Part	Age (year)	Region	Vaccine	Ν	NF	CCS	HBsAg+	Anti-HBc+
	But [19]	5	RCT	GP	1-11	High	RV	104	63	0	0	0
	But [19]	5	RCT	GP	1-11	High	PDV	104	64	0	0	0
	Chadha [20]	5	Cohort	HCW	37.5	Inter	PDV	18	18	0	0	0
	Durlach [21]	5	Cohort	HCW	22-55	Low	RV	292	175	0	0	0
	Gilca [22]	5	Cohort	GP	8-10	Low	RV	377	283	0	0	0
	Goh [23]	5	Cohort	HCW	19-21	High	PDV	240	100	0	0	1
	Joshi [24]	5	Cohort	HCW	21-40	Inter	RV	78	65	0	0	No data
1	Lai [25]	5	RCT	GP	1-11	High	RV	106	63	0	0	0
	Lai [25]	5	RCT	GP	1-11	High	PDV	107	64	0	p	0
	Mintai [26]	5	Cohort	GP	13-15	High	PDV	95	95	0	0	9
	Wainwright [27]	5	Cohort	GP	1-65+	High	PDV	1581	1114	0	0	4
	Yuen [28]	5	RCT	GP	1-11	High	RV	99	63	0	0	0
	Yuen [28]	5	RCT	GP	1-11	High	PDV	104	64	0	0	0
	Zhang [29]	5	Cohort	GP	13-15	High	PDV	95	85	0	0	9
Total	-	5	-	-	-	-	-	3400	2316	0	0	23

Poorolajal, Vaccine 28 (2010) 623-631

Meta analysis of protection in HBV vaccine studies, stratum 2: 6–10 years FU

			Vaccine	Control		Incidence	Incidence
Study or Subgroup	Incidence) SE	Total	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
1.2.2 Stratum 2							
But 2008	0.0096154	0.009569	104	0	0.7%	0.01 [-0.01, 0.03]	
But 2008	0	0.0129728	104	0	0.4%	0.00 [-0.03, 0.03]	
Chadha 2000	0	0.0612909	18	0	0.0%	0.00 [-0.12, 0.12]	
Durlach 2003	0.0068493	0.0048266	292	0	2.8%	0.01 [-0.00, 0.02]	-
Gilca 2008	0	0.0037118	377	0	4.7%	0.00 [-0.01, 0.01]	+
Goh 1995	0.0136519	0.0067792	293	0	1.4%	0.01 [0.00, 0.03]	-
Patel 2004	0.0729167	0.0187639	192	0	0.2%	0.07 [0.04, 0.11]	
Van Herck 1998	0	0.0103219	132	0	0.6%	0.00 [-0.02, 0.02]	-+-
Wainwright 1997	0.0082226	0.0022712	1581	0	12.6%	0.01 [0.00, 0.01]	•
Yuen 1999	0	0.0129728	104	0	0.4%	0.00 [-0.03, 0.03]	
Yuen 1999	0.010101	0.0100499	99	0	0.6%	0.01 [-0.01, 0.03]	
Subtotal (95% CI)			3296	0	24.4%	0.007 [0.004, 0.010]	•
Heterogeneity: Chi ² = 1	8.37, df = 10	(P = 0.05);	l² = 46%				
Test for overall effect: 2							

Stratum	Study	Fu (year)	Design	Part	Age (year)	Region	Vaccine	N	NF	CCS	HBsAg+	Anti-HBc+
	Goh [23]	6	Cohort	GP	18-21	High	PDV	293	190	0	2	4
	Van Herck [30]	8	Cohort	GP	23.3	Low	RV	132	40	0	0	0
	Xu [31] ^a	9	RCT	GP	5-9	High	PDV	126	101	0	1	16
	But [19]	10	RCT	GP	1-11	High	RV	104	55	0	0	1
	But [19]	10	RCT	GP	1-11	High	PDV	104	56	0	0	0
-	Chadha [20]	10	Cohort	HCW	37.3	Inter	RV	18	16	0	0	0
2	Durlach [21]	10	Cohort	HCW	33-40	Low	RV	292	114	0	0	2
	Gilca [22]	10	Cohort	GP	8-10	Low	RV	377	277	0	0	0
	Patel [32]	10	Cohort	GP	Infants	High	PDV	192	192	0	0	14
	Wainwright [33]	10	Cohort	GP	1-65+	High	PDV	1581	1059	0	2	13
	Yuen [28]	10	RCT	GP	1-11	High	RV	99	55	0	0	1
	Yuen [28]	10	RCT	GP	1-11	High	PDV	104	56	0	0	0
Total	-	6-10	-	-	-	-	-	3422	2211	0	5 (51

Poorolajal, Vaccine 28 (2010) 623-631

Meta analysis of protection in HBV vaccine studies, stratum 3:11–15 years FU

			Vaccine	Control		Incidence	-			cidence	
Study or Subgroup	Incidence	SE	Total	Total	Weight	IV, Fixed, 9	5% CI		IV, Fb	<u>ced, 95% C</u>	
1.2.3 Stratum 3											
But 2008	0.0096154	0.009569	104	0	0.7%	0.01 [-0.0	01, 0.03]				
But 2008	0	0.0129728	104	0	0.4%	0.00 [-0.0	3, 0.03]			-	
Gabbuti 2007	0	0.0029159	480	0	7.6%	0.00 [-0.0	01, 0.01]			+	
McMahon 2005	0.0111421	0.00277	1436	0	8.5%	0.01 [0.0	01, 0.02]			•	
Yuen 2004	0.010101	0.0100499	99	0	0.6%	0.01 [-0.0	01, 0.03]			+	
Yuen 2004	0	0.0129728	104	0	0.4%						
Subtotal (95% CI)			2327	0	18.2%	0.006[0.	002, 0.0	10]		•	
Heterogeneity: Chi ² = Test for overall effect:			= 4 1%								
Stratum Study	Fu (yea	r) Design	Part	Age (year)	Region	Vaccine	N	NF	CCS	HBsAg+	Anti-HBc+
Gabbuti [34]	11	Cohort	GP	12	Low	RV	480	228	0	0	0
Xu [35] ^a	11	RCT	GP	5-9	High	PDV	126	84	0	1	28

High

High

High

High

High

High

High

-

PDV

RV

PDV

PDV

PDV

RV

PDV

-

424

37

36

52

37

36

1717

783

0

0

0

1

0

0

0

1

5

0

0

1

6

0

0

13

688

104

104

308

99

104

3449

1436

No data

No data

1

0

16

1

0

46

Infants

1-11

1-11

1-3

1-65+

1-11

1-11

-

Poorolajal, Vaccine 2	28 (2010) 623–631
-----------------------	-------------------

Liu [36]

But [19]

But [19]

Liao [37]

Yuen [39]

Yuen [39]

-

McMahon [38]

3

Total

12

15

15

15

15

15

15

11-15

Cohort

RCT

RCT

RCT

RCT

RCT

-

Cohort

GP

GP

GP

GP

GP

GP

GP

-

Meta analysis of protection in HBV vaccine studies, stratum 4:16–20 years FU

			Vaccine	Control		Incidence	Incidence
Study or Subgroup	Incidence	SE	Total	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
1.2.4 Stratum 4							
But 2008	0.0096154	0.009569	104	0	0.7%	0.01 [-0.01, 0.03]	
But 2008	0.0096154	0.009569	104	0	0.7%	0.01 [-0.01, 0.03]	+
Yuen 2004	0.0096154	0.009569	104	0	0.7%	0.01 [-0.01, 0.03]	+
Yuen 2004	0.010101	0.0100499	99	0	0.6%	0.01 [-0.01, 0.03]	+
Subtotal (95% CI)			411	0	2.8%	0.010[0.000, 0.019]	•
Heterogeneity: Chi ² = 0	.00, df = 3 (P	= 1.00); l ² =	• 0%				
Test for overall effect: Z							

Stratum	Study	Fu (year)	Design	Part	Age (year)	Region	Vaccine	N	NF	CCS	HBsAg+	Anti-HBc+
	Alavian [40]ª	16	Cohort	HCW	19-49	Inter	RV	200	113	0	0	30
	Yuen [39]	18	RCT	GP	1-11	High	RV	99	30	0	0	1
4	Yuen [39]	18	RCT	GP	1-11	High	PDV	104	33	0	0	1
	But [19]	20	RCT	GP	1-11	High	RV	104	22	0	0	1
	But [19]	20	RCT	GP	1-11	High	PDV	104	24	0	0	1
Total	-	16-20	_	-	-	-	-	611	222	0	0	34
										-	_	

Summary: Meta-analysis of long term protection by HBV vaccine

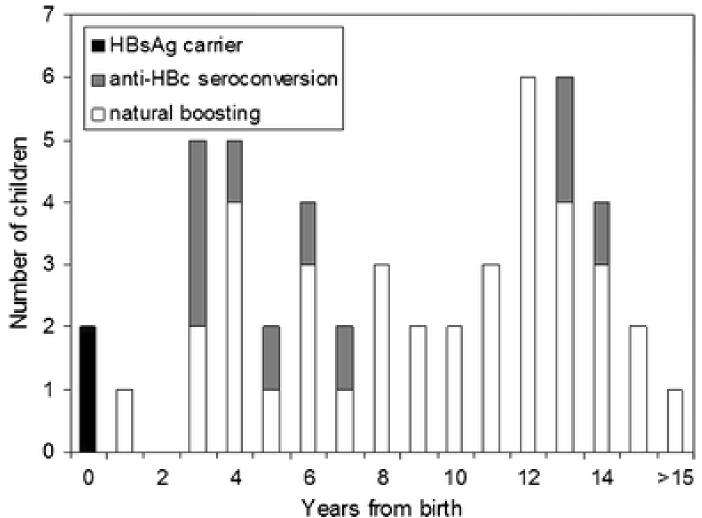
- A total of 34 cohorts involving 9356 subjects were included in the final meta-analysis
- Overall cumulative incidence of HBV breakthrough infection 5–20 years post-primary vaccination was 0.007 [95% CI: 0.005 to 0.010]
- Subgroup analysis of breakthrough HBV based on endemicity:
 - Regions with low endemicity 0.001 [95% CI: 0.000-0.005]
 - Regions intermediate endemicity 0.061 [95% CI: 0.000-0.177]
 - Regions with high endemicity 0.017 [95% CI: 0.008-0.025]
 - p< 0.001 for trend</p>
- Subgroup analysis of breakthrough HBV based on age
 - participants aged 1–19 years 0.021 [95% CI: 0.008 to 0.034]
 - participants aged 20–39 years 0.027 [95% CI: 0.000 to 0.053]
 - p = 0.24 for trend
- Eight transient HBsAg seroconversions occurred among 11,090 participants in different periods of post-vaccination follow-up but no one became chronic carrier

Protection in HBV vaccinees with low anti-HBs

Table 1 Protection among HB vaccinees in HBV endemic countries despite waning vaccine-induced anti-HBs antibodies

Population	No. followed up	Time (years)	Anti-HBs < 10 mIU/L	HBsAg+	Anti-HBc+	Disease
Chinese children	74	9	38 (51%)	0	12 (9%)	No
Taiwanese children	140	5	117 (83%)	0	10 (7%)	No
Alaskan children & adults	1194	10	907 (76%)	2 (transient)	13 (1.1%)	No

HBV Breakthrough in vaccinees can occur in those with high anti-HBs level


Table 2. Antibody Concentrations and Markers of Hepatitis B Virus Infection in 24 Study Participants with Evidence of Breakthrough Hepatitis B during 15 Years after Hepatitis B Immunization*

Age at First Vaccine	Sex	Time from First Dose to	Anti-HBs Level, mIU/mL			HBV DNA Status	HBV Conversion Statust
Dose, y		Anti-HBc Positivity, y	Highest before Infection	1 y before Infection	At Time of First Anti-HBc– Positive Result	Status	Status
22	Female	1	22	NA	214‡	Positive	Definite
54	Female	2	5	5	604	Positive	Definite
44	Female	4	505	173	176	Negative	Definite
45	Female	4	8	1	3026	Positive	Definite
11	Female	5	518	30	21	Positive	Definite
1 ⁸ / ₁₂	Male	5	608	54	183	Negative	Definite
47	Male	5	37	0	209§	Positive	Definite
25	Male	5	181	18	16	Negative	Definite
46	Female	6	44	0	1424	Negative	Definite
46	Female	7	2	NA	229	Negative	Definite
1 ⁴ / ₁₂	Female	7	1011	11	540	Negative	Definite
16	Male	8	23	NA	132	Negative	Definite
1 ¹¹ / ₁₂	Female	8	456	2	333	Negative	Definite
6	Female	8	1817	142	210	Negative	Definite
42	Female	9	0	0	0	Negative	Definite
1 ² / ₁₂	Male	11	12	0	291	Positive	Definite
17	Male	5	86	9	5809	Negative	Possible
59	Male	5	7	NA	406	Negative	Possible
4	Female	6	4474	292	1692	Negative	Possible
1 ⁵ / ₁₂	Female	6	11	4	3	Negative	Possible
49	Female	7	6284	NA	3939**	Negative	Possible
1 ⁸ / ₁₂	Male	9	4850	4850	1417	Negative	Possible
9	Male	11	18 456	951	889	Negative	Possible
65	Female	15	2	0	0	Negative	Possible

8/24 (33%) have high anti-HBs levels 1y before breakthrough

McMahon, Ann Intern Med. 2005;142:333-341.

Outcomes after HBV vaccination in 630 Czech newborns

Natural boosting: increase in anti-HBs >2x between visits without vaccine booster

Roznovsky, Infection 2010;38(5):395-400

Anti-HBs titres and risk of breakthrough infection

Anti-HBs (IU/I)	Number of children	Anti-HBc seroconversion _a (%)	Natural boosting₄ (%)
Negative (<10)	46	3 (6.5)	3 (6.5)
Low (10–99)	106	3 (2.8)	6 (5.7)
High (≥100)	468	4 (0.9)	28 (6.0)

Non responders to primary vaccine dose

- In adults 5–7 % remain unprotected with anti- HBs antibody levels <10 IU/ml measured 4 weeks after the last dose of the yeastderived HBsAg
- Under certain unfavorable circumstances up to 70 % remain non-responders or low responders

Factors assoc with non-response:

- Male sex
- Tobacco smoking
- Obesity
- Age (30 yr)
- Immunosuppression
- HIV infection
- Chronic liver disease
- Alcoholism
- Chronic renal disease
- Site of injection (gluteal vs. deltoid)
- Length of needle
- Genetic predisposition

Management of non-responders

CDC recommendations -Revaccination

 revaccination with 1 additional vaccine dose, because a single dose may result in as many as 15% to 25% of individuals developing protective anti-HBs.

If necessary, 2 additional doses (3 total booster injections) can be administered; these additional injections usually result in seroconversion in 30% to 50% of recipients.

•Those with risk factors for non response, 40µg dose of vaccine can be used

Use of adjuvants or next gen vaccines

 Vaccines containing pre-S1, pre-S2 and S subunits (Sci-B-Vac[™])

> Protection in non responders: 81.7 and 49.1 %, respectively (*P* < 0.001)

•Vaccines containing pre-S1, pre-S2 and S subunits and new adjuvants (HBV/MF59)

 Concurrent adminstration with GSCF

Recommendations for those at high risk

High risk groups

- Healthcare workers
- IVDU
- Renal dialysis patients
- High risk sexual behaviour
- Family of HBV carriers
- Immunocompromised patients

Suggestion

- Maintain anti-HBs>10 IU/mI
- Check anti-HBs regularly
- Give boosters
 before anti-HBs
 levels <10 IU/ml

Conclusions

- The HBV vaccine has had a tremendous impact on reducing Chronic Hepatitis B globally and is considered one of the most successful vaccines and millions of doses have been administered
- The anti-HBs levels decline with time in vaccinees but meta analysis show that HBV breakthrough (defined as anti-HBc+) is only 0.7% overall with no chronic carriers, a remarkable achievement
- There is no evidence that a booster dose is necessary even in those with low Ab titres as there is immunological memory
- However, it is prudent to ensure non responders obtain an antibody response, and high risk individuals check Ab levels and have boosters if they are low