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Overview 

• Defining the scope 

• Background to the models used in economic analyses of vaccination 
programmes 

• A few examples 
– Predicting and quantifying the direct and indirect effect of vaccination 

programmes 

• Summary of the literature 

• Conclusions 
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Models used to evaluate C/E 

of programmes  

• Static or decision analysis models (also used for non-
infectious diseases)  
– Constant force of infection (fixed risk) models 

• Decision analysis models 

• Markov models 

– Attack rate (force of infection) is fixed parameter(s) 

 l = fixed 

• Dynamic models (only infectious) 
– Risk depends on the number infectious individuals 

– Force of infection depends on # infectious individuals at time t 

 l(t) = b I(t) 

– Population incidence is FOI multiplied by number susceptibles 

 



Dynamic models (e.g. the 

SIR model) 

• Incidence in susceptibles depends on the # infectious 
individuals at a point in time 

• Indirect protection included 
– Age-structured models can be used to predict future changes in the 

average age at infection 

• Model infection (not disease) 
– Link infection (and infectiousness to disease) 

• All other aspects same as static models 
– E.g. progression to disease, death etc. 

• Usually run over multiple cohorts 
– Vaccination programmes run for many years 

– Indirect effects take time to build up 

 
 



Static: general scheme 

Step 1 
• Estimate the incidence 

– From literature or data 

• Apply this incidence to the population of interest in the model 
Step 2 
• Estimate vaccine efficacy against disease (usually from Phase 3 trial) 
• Assume coverage 
Step 3 
• Reduce incidence in cohort accordingly: 
• Incidence in Vaccinated = Incidence  * (1- (Coverage * efficacy))  
• E.g. 

– Coverage = 0.9 
– Efficacy = 0.9 
– Incidence in vaccinated cohort is reduced by 81%   

Step 4 
• Estimate cost per case, cost of vaccination, QALYs lost per case etc. 
• Integrate into economic analysis  

 
 



Dynamic: general scheme 

Step 1 
• Estimate the incidence 

– From literature or data 

• Estimate the force of infection (per susceptible incidence) 
Step 2 
• Estimate or assume underlying direct/indirect contact patterns 
Step 3 
• Summarise host-pathogen relationships and estimate appropriate parameters 

– Natural immunity to infection and disease 
– Duration of infectiousness, latency, immunty etc 
– Probability of transmission given contact 

• Calibrate model to baseline (pre-vaccination) data 
Step 4 
• Estimate vaccine efficacy against infection (and disease) 
• Assume coverage 
Step 5 
• Run model with / without vaccination and calculate impact of programme in the 

population and how this changes over time 
Step 6 
• Estimate cost per case, cost of vaccination, QALYs lost per case etc. 
• Integrate into economic analysis  

 



Comparing models:  

chickenpox vaccination (Brisson & Edmunds, 2003) 

• Method 

– Assess the effectiveness of vaccination programmes using a: 

– Static model (only accounts for direct protection from 
vaccines) 

– Dynamic model (takes account of changes in risk of infection 
resulting from vaccination)   

– The two models are otherwise identical 

• Same (pre-vaccination force of infection) 

• Same risk of disease (age-specific) given infection  

  



Comparing models:  

chickenpox vaccination (Brisson & Edmunds, 2003) 

• Universal infection usually of childhood 

• Serious disease more common in adults  
– 30% hospitalisations and 50-85% of deaths in adults 

• Assume: 
– Vaccine efficacy 100% 

– Coverage 80% 

– Population ~50 million, 75 year life-expectancy 

• Compare: 
– Routine vaccination at 18 months (infant) 

– Routine vaccination at 11 years (adolescent) 

 

• N.B. cut-down (toy) model, not very realistic! 
 



Herd immunity (external benefit) 

Diff = 10m  
over 80 yrs 
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• Size of indirect effect depends on reduction in 
incidence (i.e. how many immunised) 



Comparison of models:  

age distribution after infant vaccination  
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Brisson & Edmunds (2003)  MDM 23 (1): 76-82 



Comparison of models: 

deaths 
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N.B toy model! Results of more 
complicated model not as extreme. 

Static Dynamic 



Summary of chickenpox 

example 

• Indirect protection (reduced risk of infection following mass 
immunisation) results in many extra cases prevented 

• Reduced risk of infection following mass vaccination also: 
– Increases the average age at infection 

• Can have positive (e.g. pertussis) or potentially negative effects on health 
(e.g. chickenpox, rubella, HAV) 

• Reduced throughput of susceptibles increases the inter-epidemic 
period 
– May well have a honey-moon period (relatively long period of low incidence 

after implementation of vaccination at high coverage 

• Static models cannot take account of any of these things 

• [Or elimination, or changes in return to scale with changes in 
coverage (see Brisson and Edmunds 2003)] 



Other indirect effects 

• Indirect protection and a concomitant increase in the average 
age at infection, time between epidemics, etc. are effects 
common to many vaccine preventable diseases 
– Particularly the “childhood” diseases that stimulate relatively long-term 

immunity  

• However, there are also a range of vaccine (disease)-specific 
effects, e.g.: 
– transmission of OPV 

– Serotype replacement following pneumococcal conjugate vaccination 
(PCV) 

  



Direct and indirect effects of 

PCV vaccination 

• Vaccination offers direct 
protection to those 
immunised 

• Measured in Phase 3 trials 

• Also lowers risk of 
infection to others, as 
vaccine offers protection 
against carriage 
• Need data on protection 

against carriage to model this 

 

Reduction in IPD in US 
Whitney et al. NEJM, 2003 
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Herd immunity and serotype 

replacement in UK 

• Reduction in carriage with 
vaccine types can also lead to 
an increase of carriage with 
non-vaccine types if carriage 
of type A inhibits carriage with 
type B 

• Could reduce the impact of 
the programme 

• Level of replacement carriage 
depends on competition 
between VT & NVT 

• Level of replacement disease 
depends on pathogenicity of 
NVT 
 

Serotypes in PCV7, <2 yrs 

Serotypes NOT in PCV7, <2 yrs 

IPD incidence E&W, HPA 



Herd immunity & serotype 

replacement: impact on IPD 

Feikin D et al. PLoS Med (2013) 



Summary of PCV 

• Indirect effects are much larger than direct (on overall health) 

• Herd immunity reduces infection in age groups not included in the 
vaccine 

• Serotype replacement tempers beneficial impact of programme 

• Reduction in vaccine types also makes wider immunisation less 
attractive 
– E.g. vaccination of the elderly, or risk groups (e.g. Rozenbaum et al. BMJ 2012) 

• Models predicted serotype replacement likely (Lipsitch EID 1999) but 
the scale of the effect was difficult to predict before implementation 

• Herd immunity and serotype replacement not captured by static 
models   



Outbreaks & timing 

of vaccination 

• At outset of epidemic reproduction number 
is highest 
– Greater than 1 

• Indirect effects (herd) maximal 
– Chains of transmission avoided 

 

 

• In declining phase of an outbreak 
reproduction number is low 
– Less than 1 

• Indirect effects small 

 

• Cost-effectiveness of vaccination dependent 
on timing 

• Static models not appropriate for outbreaks 
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Types of models used in 

economic analyses 

Systematic reviews of economic analyses 

Kim & Goldie 
Pharmacoeconomics 
(2008) 
 
23 dynamic 
252 static 



Summary 

• Indirect effects generally arise due to reduction in infectiousness 

– Not all vaccines/programmes likely to stimulate significant indirect effects, e.g. 

• PPV vaccination (doesn’t protect against carriage) 

• Vaccination of adolescents against chickenpox/rubella (vaccinate at an age when 
most are already immune) 

– But most do 

• Most indirect effects are beneficial to public health – greater numbers 
protected 

• Not all are beneficial (e.g. age shifts, rubella, chickenpox; zoster) 

• Affects  distribution of disease in the population (+ve or -ve) 

• Often influences optimal vaccination strategy (e.g. flu) 

• Timing of vaccination has major impact on cost-effectiveness of outbreaks 

• Indirect effects are rarely taken account in economic analyses 

– Poor decision making 

• Investment in use of appropriate methods may well pay off 

 


