Rotavirus vaccines: Issues not fully addressed in efficacy trials

Umesh D. Parashar Lead, Viral Gastroenteritis Team CDC, Atlanta, USA <u>uparashar@cdc.gov</u>

Two New Rotavirus Vaccines Licensed in 2006

•Trials of 60-70,000 infants each

High Efficacy of Both Vaccines in Trials in High/Middle Income Countries

Vaccine	Region	Efficacy (95%Cl)
Rotarix	Europe	96% (90%-99%)
Rotarix	Latin America	85% (72%-92%)
RotaTeq	Europe/US	98% (88%-100%)

National RV introductions, 77 countries*

How well will vaccines perform in routine use?

Rotavirus Vaccines in USA

- Feb 2006 RotaTeq recommended
- June 2008 Rotarix recommended

High Effectiveness of RotaTeq against Severe Rotavirus Disease

	Study 1	Study 2	Study 3	Study 4	Study 5
	Boom et al,	Staat et al,	Cortese et al,	Payne et al,	Cortese et al,
	2010	2011	2011	2013	2013
3 doses	89%	87%	90%	84%	92%
	(70, 96)	(71, 94)	(84, 94)	(78, 98)	(75, 97)
2 doses	82%	88%	90%	78%	84%
	(15, 96)	(66, 96)	(75, 96)	(65, 86)	(1, 99)
1 dose	65% (-11, 89)	74% (37, 90)	66% (16, 86)	70% (50, 82)	NA

Sustained RotaTeq Effectiveness Over 4 Years of Life

Payne DC, et al. Clin Infect Dis 2013

All Cause Acute Gastroenteritis (AGE) and Rotavirus AGE Hospitalizations, NVSN 2006-2013

Payne DC, et al. Clin Infect Dis 2011

Age-Specific Rotavirus Hospitalization Rate Reduction and Vaccine Coverage, USA

Age	Decline in rotavirus hospitalization rate (2008 vs. 2006)	Rotavirus vaccine coverage in 2008 (>=1 dose)	
< 1 year	66%	56%	
1 -< 2 years	95%	44%	
2 -< 3 years	85%	<1%	
This age to rece	e cohort was ineligible eive rotavirus vaccine	Herd Protection	

Reduction in Gastroenteritis Hospitalizations in Older Children and Young Adults

Gastanaduy et al JAMA 2013

Will vaccination save lives?

First evidence of impact of vaccine on diarrhea mortality in Mexico

Effect of Rotavirus Vaccination on Death from Childhood Diarrhea in Mexico

Richardson et al, NEJM 2010

Mortality decline sustained for four years post vaccine implementation in Mexico

How well will live oral rotavirus vaccines work in the developing world?

Hurdles to Immunization for a Live Oral Rotavirus Vaccine

Factors that lower viral titer

- Breast milk
- Stomach acid
- Maternal antibodies
- OPV

Factors that impair immune response

- Malnutrition Zn, Vit A
- Interfering microbes- viruses and bacteria
- Other infections- HIV, malaria, TBC

Moderate Efficacy of Rotavirus Vaccines in Africa and Asia

Vaccine	Region	Countries	Efficacy (95%CI)
RotaTeq	Africa	Ghana, Kenya, Mali	64% (40%-79%)
RotaTeq	Asia	Bangladesh, Vietnam	51% (13%-73%)
Rotarix	Africa	South Africa, Malawi	62% (44%-73%)

Armah et al. Lancet 2010 Zaman et al. Lancet 2010 Madhi et al NEJM 2010

Rotavirus vaccines prevent more disease, despite lower vaccine efficacy, in higher burden settings

Madhi, NEJM 2010

GAVI-supported RV introductions, 35 countries^{*}

South Africa

• Introduced monovalent rotavirus vaccine (Rotarix, RV1) in August 2009

Monthly count of diarrhea hospitalizations among children <5 years of age, Soweto, South Africa, 2006-2013

Slide from Michelle Groome

Rwanda

 Introduced pentavalent rotavirus vaccine (RotaTeq, RV5) in May 2012

Number of Diarrhea Hospitalizations among Children <5 Years of Age, 27 District Hospitals, January 2009 – March 2014, Rwanda Health Management Information System

Total Hospital and AGE Admissions among Children <5 Years of Age, 6 Hospitals

Rotavirus Positivity by Age Group for Pre-Vaccine Introduction (2011) and Post-Vaccine Introduction (2013)

Rotavirus Positivity by Age Group for Pre-Vaccine Introduction (2011) and Post-Vaccine Introduction (2013)

How well will vaccines protect against range of strains?

RotaTeq is Pentavalent & Rotarix is Monovalent

RotaTeq

Five bovine-human rotavirus strains

Rotarix

Single human rotavirus strain

High Rotarix (G1P8) Effectiveness against Non-Vaccine Strains in Several Countries

Country	Post-vaccine	Vaccine Effectiveness
	strains	(95% CI)
Brazil	G2P[4]	85% (54, 95)

High Rotarix (G1P8) Effectiveness against Non-Vaccine Strains in Several Countries

Country	Post-vaccine strains	Vaccine Effectiveness (95% CI)
Brazil	G2P[4]	85% (54, 95)
Mexico	G9P[4]	94% (16, 100)

High Rotarix (G1P8) Effectiveness against Non-Vaccine Strains in Several Countries

Country	Post-vaccine strains	Vaccine Effectiveness (95% CI)
Brazil	G2P[4]	85% (54 <i>,</i> 95)
Mexico	G9P[4]	94% (16, 100)
Bolivia	G9P[8]	84% (64 <i>,</i> 92)
	G2P[4]	71% (19 <i>,</i> 90)
	G3P[8]	92% (60, 98)
	G9P[6]	87% (-10, 98)

Key Messages

Marked impact in affluent countries

- Indirect benefits to unvaccinated groups
- Impact on diarrhea mortality
- Efficacy lower in low income settings
 - But impact greater because of high burden
 - Promising early data from African countries
- Both vaccines show broad protection against strains included and not included in vaccine