Correlates of enteric vaccine-induced protection Fondation Mérieux, March 21-23, 2016

Lymphocyte Migration to/from the Gut

Tissue-specific markers of enteric vaccines' immunogenicity

Quantitative aspects of lymphocyte migration

~2% (1 x 10¹⁰) of lymphoid cells are in the blood at any one time Lymphocytes stay in the blood for ~30 minutes

 ~ 90% of lymphocytes leave the blood to enter organs such as the liver, lung, gut lamina propria, spleen and bone marrow.
 Traffic is 5 times faster than traffic through lymphoid tissue

Extravasation of leukocytes

Initial contacts of activated (effector) T cells

Migration and diapedesis

Firm adhesion causes the leukocyte to flatten and migrate between endothelial cells

Leukocyte migrates towards the site of infection/vaccination by sensing and following a gradient of chemokines produced by epithelial cells that have encountered the vaccine/microorganisms

Arrest is reversible if diapeisis does not occur

SMALL INTESTINE

DIFFERENTIAL CO-EXPRESSION OF TISSUE-SPECIFIC INTEGRINS AND CHEMOKINE RECEPTORS DIRECTS B AND T CELL LOCALIZATION TO THE SMALL AND LARGE INTESTINES

	SMALL INTESTINE	LARGE INTESTINE
	α4β7	α4β7
IgA PLASMABLASTS	CCR9 + CCR10	CCR10
EFFECTOR T CELLS (CD4 TH1, TH2, FTH)	CCR9 + CCR5 + <u>CXCR4*</u>	GPR15 + CCR6 + <u>CXCR4*</u>
Tregs (CD25+, FOXP3+)	CCR9 + CCR5 + CCR7	
TH17 CELLS	CCR9 + <u>CCR6*</u>	CCR6 <u>*</u> + GPR15
INTRA-EPITHELIAL T CELLS CD8αβ and CD4αβ CD8αα 	CCR9 CCR9 + GPR18	?
		* during inflammation
	PEYER'S PATCHES	
	CD22	
NAIVE B CELLS MEMORY B CELLS	St6gal1	

Abtezion et al *Gastroenterology* 2016;150:340–354

Eriksson K et al. 1994

Anatomic segmentation of the intestinal immune response in non-human primates

Different distribution of antibody-secreting cells (ASC) after oral and rectal immunizations with cholera toxin (CT)

Practical implications:

How/where to administer?
 → formulation issues (delivery systems, protective vehicles, mucoadhesives, surfactants)

Where and how to measure mucosal immune responses?
 No qualified/validated assay accepted by regulators → no mucosal correlates/surrogates of protection → Extensive clinical development (efficacy)

TRACKING MUCOSAL ANTIBODY RESPONSES IN BLOOD!

Poliovirus infection: non-mechanistic CoPs in blood after OPV and IPV

Dey et al. PLoS ONE 2016

Buisman et al. J Infect Dis 2008

Challenges

- Validation of tissue-specific blood ASCs in human challenge studies (rota, cholera, ETEC, Shigella, typhoid vaccines);
- Phenotypic definition and homing properties of mucosal "memory" B cells;
- Mucosal effector T cells (CTLs, NKTs, Tregs) ?
- Mucosal Innate Immune markers

Cecil Czerkinsky

Institut de Pharmacologie Moléculaire & Cellulaire CNRS-INSERM Sophia-Antipolis France

czerkinsky@ipmc.cnrs.fr

Tuesday 22 March 2016 Session 1

Workshop: NOVEL APPROACHES TO CORRELATE MUCOSAL IMMUNE RESPONSES WITH PROTECTION IN HUMANS

- 08:30 08:45 Introduction to the workshop: intestinal B and T cells "homing" Cecil Czerkinsky
 - 08:45 09:00 Discussion
- 09:00 09:20 Mucosally derived antibody-secreting B cells
 Anu Kantele
 - 09:20 09:35 Discussion
- 09:35 09:55 Th1, Th17 and T follicular helper cell responses to oral vaccination *Anna Lundgren*
 - 09:55 10:10 Discussion

10:10 - 10:30 Co

Coffee break

 10:30 - 10:50 Heterotypic B cell immunity to rotavirus- new insights *Harry Greenberg* 10:50 - 11:05 Discussion