Immune response and correlates of protection against *Shigella*

Daniel Cohen

School of Public Health, Tel Aviv University, Israel
Shigellosis

- Common all over the world and hyperendemic in developing countries.

- *Shigella spp.* was one of the four major pathogens significantly associated with moderate-to-severe diarrhea in children aged <60 months in the recent GEMS study.

- Children with the disease have an increased risk for persistent diarrhoea, nutritional faltering, and death.

Genus *Shigella*

- *S. sonnei* is the leading *Shigella* species in industrialized countries

- *S. flexneri* (mostly serotypes 2a and 6) prevails in developing countries

- *S. boydii* and *S. dysenteriae* are responsible for around 10-15% of cases of shigellosis

- *S. sonnei* emerges globally with improvement in sanitation and socio-economic level of countries, regions and populations (Ex. Vietnam, China, Bangladesh)

Shigellosis in Israel

- Highly endemic

- Mean incidence rate of 80-100 culture-proven cases per 100,000 per year

- About 10-20 times higher than the incidence rate in the US

- Children aged 1-4 and soldiers serving under field conditions – at highest risk

Cohen D et al. 2001; 2014
Natural *Shigella* Infection

- Induces around 70% serotype specific protection
- Length of protection not clear (~2 years)
- Solid protection is probably attained after consecutive exposures to *Shigella* antigens
- Potential correlates of protection, important for vaccine development and evaluation, are incompletely defined.

Criteria for potential correlates of protection against *Shigella*

- Significantly elicited by *Shigella* natural infection.

- Associated with a reduced risk of disease under natural conditions of exposure or in human challenge studies.

- Associated with protection induced by a candidate vaccine in efficacy studies.

- Have functional capabilities.
Components of the immune response to Shigella LPS following natural infection

- Serum antibodies (IgG, IgA, IgM)
- Secretory antibodies (sIgA)
- Urinary antibodies (sIgA)
- Antibody Secreting Cells
- B memory cells
- T cell response (cytokines)
Soldiers in field units, high incidence of shigellosis in 1980s and 1990s; S. sonnei and S. flexneri equally distributed together responsible for 90% of the cases of disease,

Serum IgG anti-LPS antibodies

* Case-control studies (outbreaks).
* Prospective studies.

Serum anti-*Shigella* LPS antibodies
 Non-IgM fraction detected by passive HA after treatment of sera with 2-ME or
 IgG fraction detected by ELISA.

Strongly associated with protection against disease caused by the homologous strain of *Shigella*.

Pre-existing anti-LPS antibodies & S. sonnei Shigellosis.

- OR=4.2, p<.0001
- OR=1.2, NS

Shigella Conjugate Vaccines

Detoxified O-specific polysaccharide covalently bound to a protein:

- *S.flexneri* 2a – rEPA.
- *S.sonnei* – rEPA.

With the capability to elicit high serum LPS antibodies when injected IM

Antibody response to *S. sonnei* LPS after immunization with the *S.sonnei conjugate*

IgA **IgG** **IgM**

Time after vaccination

- 2 Wks
- 6 Wks
- 6 Mths
- 1 Yr
- 2 Yrs
- 4 Yrs
- 5 Yrs

Cohen & al., Infect. Imm. 1996
GMT of IgG antibodies to Shigella LPS before and after natural infection (n=37) or vaccination (n=23) with S. sonnei conjugate

Conjugate vaccine Natural infection

- Fold increase = 12.7
- Fold increase = 3.4

p value = 0.8445
p value = 0.0016
Antibody-Secreting Cell Response (ASC) – IgA (Shigella sonnei & flexneri Conjugate Vaccines)

<table>
<thead>
<tr>
<th></th>
<th>No./Total (Percent) with Significant ASC Response*</th>
<th>Arithmetic Mean of Positive Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ss-LPS</td>
<td>Sf-LPS</td>
</tr>
<tr>
<td>S. Sonnei vaccinees</td>
<td>18/23 (78%)</td>
<td>0/8 (0%)</td>
</tr>
<tr>
<td>S. Flexneri vaccinees</td>
<td>0/6 (0%)</td>
<td>13/19 (68%)</td>
</tr>
</tbody>
</table>

* ASC result >=18 spots/Mcells: based on the mean (3.33) + 2SD (2x6.97) found in non-vaccinees
Double-blind vaccine-controlled randomised efficacy trial of an investigational *Shigella sonnei* conjugate vaccine in young adults

Dani Cohen, Shai Ashkenazi, Manfred S Green, Michael Gdalevich, Guy Robin, Raphael Slepon, Miri Yavzori, Nadav Orr, Colin Block, Isaac Ashkenazi, Joshua Shemer, David N Taylor, Thomas L Hale, Jerald C Sadoff, Danka Pavliakova, Rachel Schneerson, John B Robbins

74% protective efficacy in young adults

Lancet 1997; 349:155-159
GMT of IgG antibodies to S. sonnei LPS among recipients of S. sonnei-rEPA in group D*

* An outbreak of S. sonnei shigellosis occurred immediately after vaccination
Age-related efficacy of *Shigella* O-specific polysaccharide conjugates in 1–4-year-old Israeli children

Justen H. Passwell\(^a,1\), Shai Ashkenzi\(^b\), Yonit Banet-Levi\(^a\), Reut Ramon-Saraf\(^a\), Nahid Farzam\(^a\), Liat Lerner-Geva\(^c\), Hadas Even-Nir\(^d\), Baruch Yerushalmi\(^d\), Chiayung Chu\(^e\), Joseph Shiloach\(^f\), John B. Robbins\(^e\), Rachel Schneerson\(^e,\,*\), The Israeli Shigella Study Group\(^2\)

\(^a\) Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
\(^b\) Schneider Children’s Medical Center, Petach Tikva 49202, Israel
\(^c\) Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer 52621, Israel
\(^d\) Saban Pediatric Center, Soroka Medical Center, Beer Sheva 84141, Israel
\(^e\) Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
\(^f\) National Institute of Diabetes, Digestive Diseases and Kidney, NIH, Bethesda, MD 20892, USA
Efficacy of 2 doses of Shigella sonnei conjugate vaccine among Israeli children by age

<table>
<thead>
<tr>
<th>Age</th>
<th>Vaccine administered</th>
<th>Efficacy</th>
<th>(95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. sonnei</td>
<td>S. flexneri 2a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Cases</td>
<td>N</td>
<td>Cases</td>
</tr>
<tr>
<td>a. Shigella sonnei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 years</td>
<td>516</td>
<td>18</td>
<td>476</td>
<td>16</td>
</tr>
<tr>
<td>>2–3 years</td>
<td>497</td>
<td>8</td>
<td>481</td>
<td>12</td>
</tr>
<tr>
<td>>3–4 years</td>
<td>371</td>
<td>3</td>
<td>358</td>
<td>10</td>
</tr>
<tr>
<td>All ages</td>
<td>1384</td>
<td>29</td>
<td>1315</td>
<td>38</td>
</tr>
<tr>
<td>b. Shigella flexneri 2a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 years</td>
<td>516</td>
<td>3</td>
<td>476</td>
<td>3</td>
</tr>
<tr>
<td>>2–3 years</td>
<td>497</td>
<td>4</td>
<td>481</td>
<td>3</td>
</tr>
<tr>
<td>>3–4 years</td>
<td>371</td>
<td>1</td>
<td>358</td>
<td>1</td>
</tr>
<tr>
<td>All ages</td>
<td>1384</td>
<td>8</td>
<td>1315</td>
<td>7</td>
</tr>
</tbody>
</table>

Passwell JH et al. 2010
Age-related IgG anti-LPS levels 2-3 weeks after second vaccine dose of Shigella conjugates

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Age (years)</th>
<th>N</th>
<th>S. sonnei Ag</th>
<th>S. flexneri 2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. sonnei</td>
<td>1-2</td>
<td>38</td>
<td>1.4</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td>>2-3</td>
<td>44</td>
<td>3.71</td>
<td>7.53</td>
</tr>
<tr>
<td></td>
<td>>3-4</td>
<td>29</td>
<td>6.38</td>
<td>9.51</td>
</tr>
<tr>
<td>S. flexneri 2a</td>
<td>1-2</td>
<td>43</td>
<td>0.25</td>
<td>18.98</td>
</tr>
<tr>
<td></td>
<td>>2-3</td>
<td>53</td>
<td>0.42</td>
<td>26.96</td>
</tr>
<tr>
<td></td>
<td>>3-4</td>
<td>30</td>
<td>0.76</td>
<td>43.86</td>
</tr>
</tbody>
</table>

Passwell JH et al. 2010
Shigella antigen-specific B memory cells are associated with decreased disease severity in subjects challenged with wild-type Shigella flexneri 2a

Rezwanul Wahid a, Jakub K. Simon c, Wendy L. Picking d, Karen L. Kotloff a, Myron M. Levine a, Marcelo B. Sztein a, b, *

a Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
b Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
c NanoBio Corporation, Ann Arbor, MI, USA
d Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA

Shigella-specific IgA B memory cells and serum IgG LPS antibodies might play a protective role in humans
Conclusions

• Serum IgG antibodies to *Shigella* LPS emerge as a correlate of protection with mechanistic capabilities.

• We continue to evaluate the possible added value of other immune parameters following exposure to natural infection and candidate vaccines.

• Highly immunogenic vaccines are needed to immunize better than natural infection especially in pediatric populations.
S. flexneri 2a –PS tetanus toxoid synthetic glycoconjugate made at Institut Pasteur (projected phase 1 in adults in Israel, 2016)
Acknowledgement

Tel Aviv University
S. Meron-Sudai
A. Bialik
S. Goren

Israel Center for Disease Control and Gertner Institute
R. Bassal
T. Shohat
M. Perry

Schneider, Hillel Yaffe, and Laniado Medical Centers
S. Ashkenazi
A. Hochberg
U. Rubinstein
S. Bulvik

Sentinel Labs
T. Rouach, C. Block
N. Keller, Y. Kenes,
D. Tern, P. Yagupski,
S. Ken Dror

Institut Pasteur
P. Sansonetti
A. Phalipon
L. Mulard
M-L Gougeon

Shigella Reference Lab
A. Ezernitchi
V. Vasilev
Part of the studies presented were supported by a grant from The European Union Seventh Framework Programme conferred to the STOPENTERICS consortium.