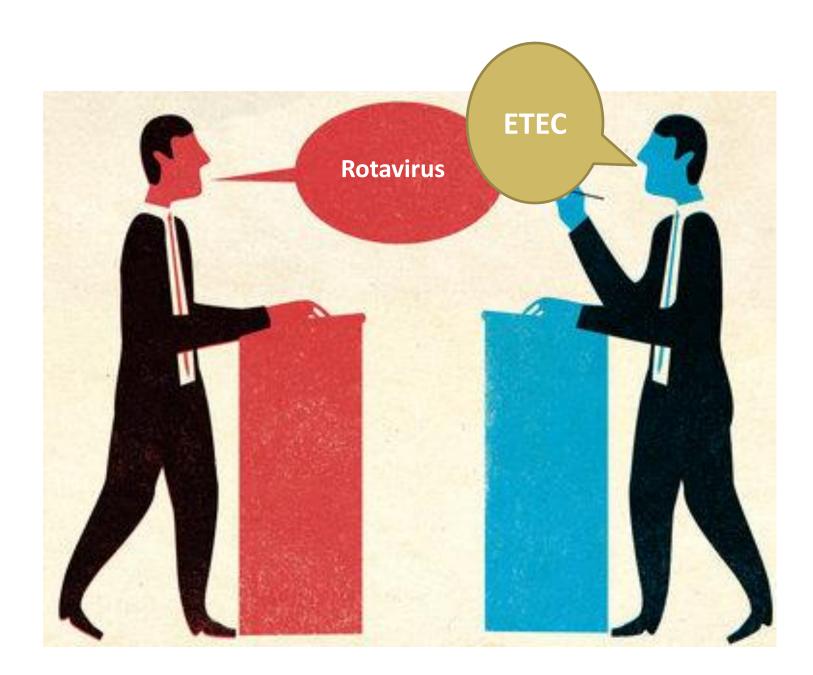
The Global Enterics Multicenter Study (GEMS)

Karen Kotloff, MD Center for Vaccine Development University of Maryland School of Medicine, Baltimore, Maryland, USA


Fondation Mérieux

Correlates of Enteric Vaccine-Induced Protection

Annecy, France 21-23 March 2016

Limitations of Previous Studies

Scope

- Few multicenter studies, least data where mortality highest
- Incomplete survey of etiologic agents
- Often limited to children < 24 mos.
- Primarily short surveillance

Methodology

- Case control design not used
- Lack of population-based incidence
- Insensitive microbiological methods
- Strains not characterized
- No follow-up; verbal autopsy data modeled to estimate mortality
- No data to guide vaccine introduction

Primary Objective of GEMS

Incidence, etiology, and adverse clinical consequences of the most life-threatening and disabling episodes of diarrhea among children < 59 months old living in developing countries in sub-Saharan Africa and S. Asia

Limitations of Previous Studies

GEMS Overview

Scope

- Few multicenter studies, least data where mortality highest
- Incomplete survey of etiologic agents
- Often limited to children < 24 mos.
- Primarily short surveillance

Methodology

- Case control design not used
- Lack of population-based incidence
- Insensitive microbiological methods
- Strains not characterized
- No follow-up; verbal autopsy data modeled to estimate mortality
- No data to guide vaccine introduction

Multicenter Study

- 7 diverse sites with mod/high U5MR, most severe episodes
- Expanded etiology
- Children 0-59 months of age
- 3 years per site

Methods addressed knowledge gaps

- Case-control study
- Censused population
- Sensitive modern micro assays
- Strains characterized for vaccine devel; strain/specimen repository
- 60-d follow-up : health, vital status
- Economic burden data collected

Basse, The Gambia PI: Richard Adegbola, PhD/ Debasish Saha, MD

> *Siaya County, Kenya* PI: Rob Breiman, MD

Bamako*, Mali* PI: Samba Sow, MD MSc

Manhica, Mozambique PI: Pedro Alonso, MD, PhD

Mirzapur, Bangladesh PI: ASG Faraque, MD

Kolkata, India PI: Dipika Sur, MD

Bin Quasim Town, Pakistan PI: Anita Zaidi, MD

Study Coordination & Advisories

Coordinating Investigator: Myron M. Levine, MD, DTPH

Epidemiology PI: Karen Kotloff

Dilruba Nasrin, MBBS, PhD, Tamer Faraq, PhD (Coordinators)

Microbiology PI: Jim Nataro

Sandra Panchalingam, PhD (Coordinator)

Statistician: Bill Blackwelder

Steering Committee on Epidemiology/Clinical Issues

Eric Mintz (CDC), Paul Stolley (UM), John Clemens (IVI/icddr,b), Halvor Sommerfelt (Bergen), Dani Cohen (Tel Aviv U), Roger Glass (Fogarty)

Steering Committee on Microbiologic Issues

Roy Robins-Browne (U of Melbourne), Philippe Sansonetti (Institut Pasteur), Patrick Murray (NIH), Duncan Steele (PATH)

Steering Committee on Biostatistical Issues

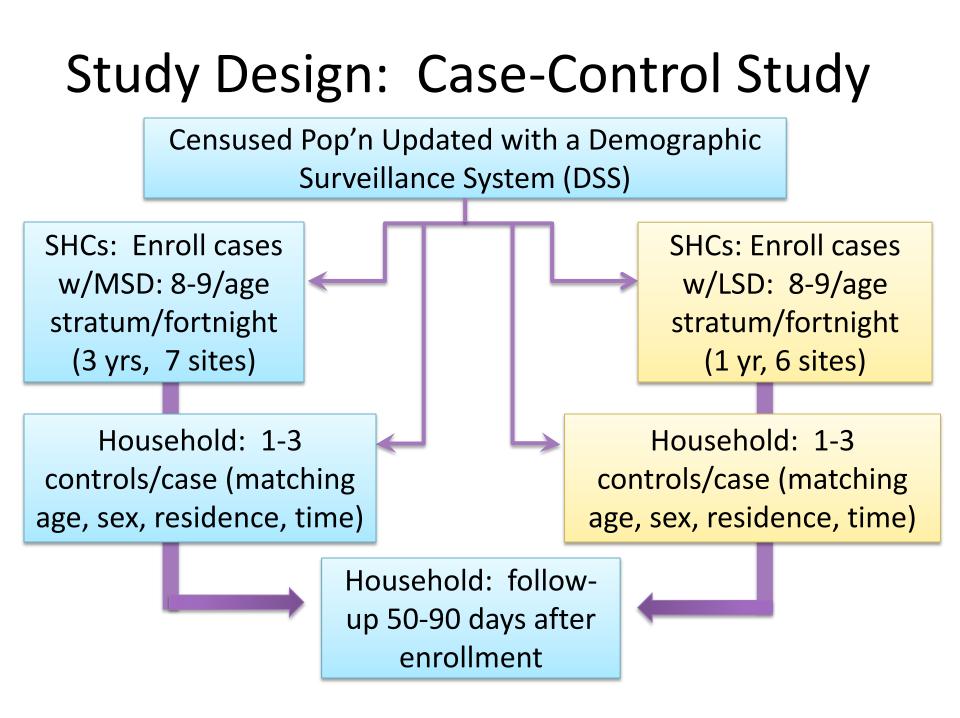
Larry Moulton (JHU), Barry Graubard (NCI), Peter Smith (LSTMH), Janet Wittes (Statistics Collaborative), William Pan (Duke)

Steering on Nurtitional Issues

Reynaldo Martorell (Emory), Claudio Lanata (IIN), Rebecca Stoltzfus (Cornell) Data Management

Cooperative Studies Program Coordinating Center (CSPCC), Veterans Admin. MD Health Care System, Perry Point, MD

UNIVERSITY of MARYLAND SCHOOL OF MEDICINE CENTER FOR VACCINE DEVELOPMENT


International Strategic Advisory Committee (GEMS-ISAC)

Co-Chairs: Prof George Griffin (UK); Prof Zulfiqar Bhutta (Pakistan); Prof Fred Binka, (Ghana)

Members: G Armah (Ghana), MK Bhan (India), RE Black (USA), J Breman (USA), WP Chaicumpa (Thailand), T Corrah (Gambia), A Cravioto (Bangladedh), V Curtis (UK), G Dougan (UK), K Earhardt (USA/India), A Grange (Nigeria), G Kang (India), C Lanata (Peru), R Martorell (USA), C Morel (Brazil), C Murray (USA), B Nair (India), M O'Ryan (Chile), P Sansonetti (France), P Smith (UK), M Tanner (Switzerland).

Deriving Population Based Estimates:

 Health care utilization surveys: 1,000 randomly selected children per DSS round

- Did child have MSD (LSD) in the previous 7 days; If yes, did they seek care at the SHCs?
- Able to measure MSD (LSD) in the SHCs and adjusted the incidence (overall and pathogenspecific) for the % of DSS children who do not seek care at the SHCs for that condition

Case eligibility

- Documented all visits of children 0-59 months from DSS and asked about presence of diarrhea;
- Evaluated each for eligibility
- Children 0-59 months (3 age strata: 0-11 mo., 12-23 mo., 24-59 mo.)
- In DSS population, Seeking care at SHC
- Diarrhea (>3 abnormally loose stools in previous 24h)
- New episode (after at least 7 diarrhea-free days)
- Acute (onset within the previous 7 days)
 - MSD case definition (≥1 of the following)
 - Sunken eyes (more than normal per parent);
 - Decreased skin turgor;
 - IV hydration administered or prescribed;
 - Dysentery (visible blood in a loose stool); or
 - Hospitalized with diarrhea or dysentery
 - LSD case definition: all others

Children with MSD in GEMS

Data collection (Cases & Controls)

- Enrollment
 - Data
 - Demographic, Clinical, Epidemiologic
 - Anthropometrics
 - Stool sample: either

- Whole stool (>3g or 3 ml)* within 12 h of registration at center, before antibiotics, OR
- Rectal swab, prior to antibiotics, followed by whole stool within 12 h of registration at center

60-day follow-up visit to the home

- Clinical sequelae; death
- Nutritional outcome (anthropometrics)
- Direct observation of environmental risks

*Only whole stool collected from controls

Laboratory Analysis*

- Culture
 - Salmonella
 - Shigella
 - Campylobacter
 - Aeromonas
 - Vibrio cholerae
- Multiplex PCR:
 - ETEC, EPEC, EAEC, STEC
- Immunoassay:
 - Rotavirus
 - Enteric adenovirus 40 and 41
- RT-PCR
 - Norovirus (genotypes I and II)
 - Sapovirus
 - Astrovirus

- Giardia lamblia
- Entamoeba histolytica
- Cryptosporidium spp.
- Post hoc
 - ETEC CFA (by PCR and monoclonals)
 - EAEC AAF typing
 - Rotavirus typing
 - Cryptosporidium, Giardia speciation
 - TAQMan Reanalysis
- GEMS 1a
 - Toxigenic B. fragilis, C. difficile,
 - H. pylori, intestinal helminths

*All assays except Post hoc performed at the sites

Attributable Fraction (AF)

- Takes into account the OR/RR, the prevalence of the pathogen, and, using the Bruzzi model, interactions/ confounding due to co-infecting pathogens
- Proportion of diarrhea cases over a specified time that would be prevented by eliminating exposure to a pathogen (assuming exposures are causal)

ENROLLMENT

487,386

child-years of observation contributed by children 0-59 months in DSS

626,519

visits to SHC

66,009 (11% of visits) to SHC were for diarrhea

14,753 (22% of diarrhea visits) met criteria for MSD

9,980 (68% of eligible) were invited to participate

9,439 cases (95% of invited) enrolled and analyzable

13,129 matched controls

Key Findings

- 1. MSD Etiology:
 - Conventional methods
 - Additional disease burden from LSD
 - New insights using TAQMan
 - How strain characterization informs vaccine development
- 2. Impact of MSD on linear growth
 - Pathogens associated with linear growth faltering
- 3. Impact of MSD on mortality
 - Relationship between stunting and survival following an episode of MSD

• Pathogens associated with mortality

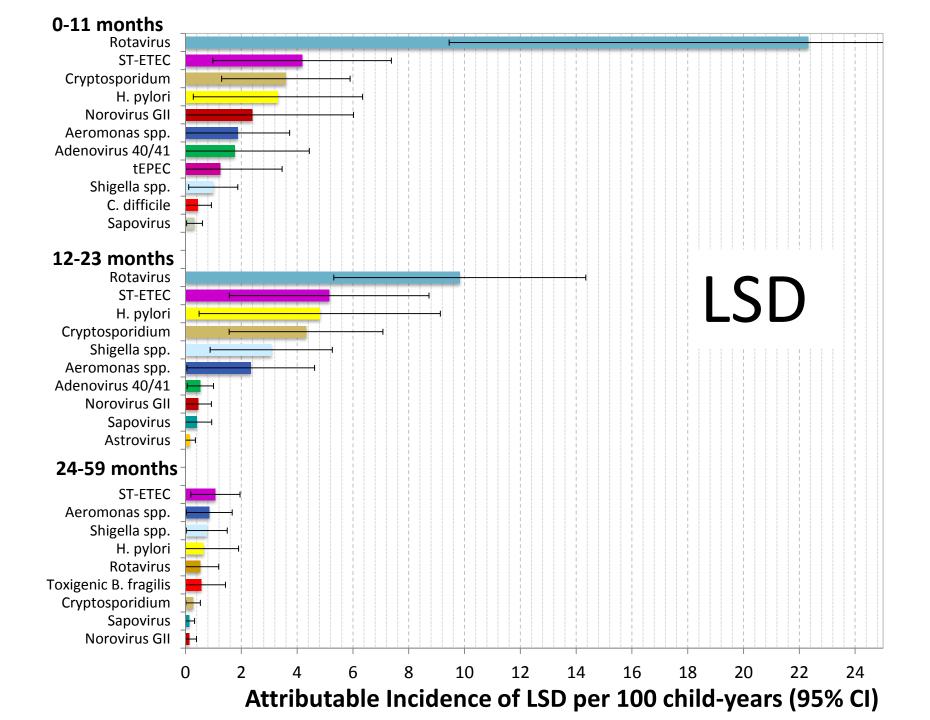
Key Findings – #1. MSD Etiology :

5 pathogens accounted for ~50% of AF

- Rotavirus
- Cryptosporidium
- Shigella
- ST-producing ETEC
- To a lesser extent Adenovirus 40/41
- Campylobacter, Aeromonas, and V. cholerae had regional importance

Adjusted Attributable Fraction, 0-11 mo.

	Gamb	Kenya	Mali	Mozamb	Banglad	India	Pakista
No. cases	400	673	727	374	550	672	633
Rotavirus	23.1	18.9	20.6	32.4	17.0	28.2	23.7
Cryptosporidium	11.4	9.3	13.8	14.1	5.7	12.4	4.9
ST-ETEC (ST-only or LT/ST)	4.5	6.4	3.9	3.0	1.4	3.1	7.4
Shigella	3.6	4.2	-	-	13.0	2.0	6.8
Norovirus GII	7.1	-	-	-	-	-	-
Aeromonas	-	-	-	-	9.9	-	10.3
Adenovirus 40/41	2.2	1.9	1.8	1.8	3.8		1.9
C. jejuni	-	-	-	-	9.9	4.0	6.3
tEPEC	-	4.9	-	-	-	-	-
NT Salmonella	-	-	-	-	3.9	-	-
Astrovirus	-	-	-	-	-	-	3.0
V. cholerae O1	-	-	-	-	-	-	3.1
E. Histolytica	-	-	-	-	3.5	-	-


Adjusted Attributable Fraction, 12-23 mo.

	Gamb	Kenya	Mali	Mozamb	Banglad	India	Pakist
No. of cases	N=455	N=410	N=682	N=195	N=476	N=588	N=399
Rotavirus	17.2	13.8	11.7	5.2	17.4	24.5	10.1
Shigella	11.8	4.5	2.2	5.9	52.9	6.3	11.5
Cryptosporidium	7.7	8.4	4.1	9.5	-	8.8	7.6
ST-ETEC (ST-only or LT/ST)	5.6	7.1	2.7	9.4	-	5.9	5.8
Aeromonas	_	_	-	-	11.4	-	9.6
Norovirus GII	8.4	-	-	-	-	5.1	-
V. cholerae O1	-	-	-	-	1.5	3.2	7.6
EAEC	-	-	-	-	9.3	-	-
Adenovirus 40/41	2.3	-	-	-	-	4.5	-
NT Salmonella	-	3.7	-	-	-	-	-
E. histolytica	-	1.3	-	-	-	1.9	-
tEPEC	-	3.4	-	-	-	-	-
C. jejuni	-	-	-	2.0	-	-	-

Adjusted Attributable Fraction, 24-59 mo.

	Gamb	Kenya	Mali	Mozamb	Banglad	India	Pakista
No. of cases	174	393	624	112	368	308	226
Shigella	12.6	9.0	1.8	16.8	69.3	11.2	8.6
Aeromonas	-	-	-	-	15.3	-	24.6
Rotavirus	12.8	3.3	3.1	-	-	14.2	-
V. cholerae O1	-	-	-	7.6	2.7	8.2	13.1
ST-ETEC (ST-only or LT/ST)	8.4	4.7	-	-	-	7.0	6.0
C. jejuni	-	-	-	-	-	9.5	12.1
E. histolytica	-	-	2.2	-	-	2.0	-
Norovirus GII	7.7	-	-	-	-	-	-
NT Salmonella	-	3.7	-	-	1.7	-	-
Cryptosporidium		2.6	-	-	-	-	-
Sapovirus	-	-	-	-	-	3.8	-

0-11 months Rotavirus									
Cryptosporidum	-		· · · ·						
ST or ST/LT-ETEC									
Shigella spp.									
Adenovirus 40/41									
Aeromonas spp.									
C. jejuni									
tEPEC									
Norovirus GII									
V. cholerae O1									
NT Salmonella	-								
E. histolytica	-								
12-23 months								\sim \sim	
Rotavirus							N /1	SD	
Shigella spp.								JU	
Cryptosporidium	F								
ST or ST/LT-ETEC									
Aeromonas									
Norovirus GII									
V. cholerae O1									
Adenovirus 40/41									
EAEC									
tEPEC	_ H +								
NT Salmonella									
24-59 months	-								
Shigella spp.									
Rotavirus		•							
C. jejuni									
V. cholerae O1									
ST or ST/LT-ETEC									
Aeromonas spp.									
Sapovirus									
E. histolytica									
Norovirus GII	- 1								
NT Salmonella	F.								
Cryptosporidium	F	Attrib	utable in	cidence pe	r 100 child	l-years and	95% conf	idence lim	its
	0	1	2	3	4	5	6	7	8 9

Strain Characterization Informs Vaccine Development

Prevalence of *S. sonnei* & *S. flexneri* serogroups and Proposed Vaccine Component Serotypes among *Shigella* Isolates from GEMS (Livio, Levine, et al CID 2014; 59:933-41)

Serogroup, serotype, or sub- serotype	Year 1	Year 2	Year 3
Total isolates	N=457	N=345	N=328
S. sonnei	21%	22%	30%
S. flexneri 2a, 3a, 6	40%	42%	40%
S. sonnei + S. flexneri 2a, 3a, 6	61%	64%	70%
<i>S. sonnei</i> + all <i>S. flexneri</i> serotypes other than S. flex 7a	88%	86%	89%

Prevalence of the main CFAs among GEMS case ETEC isolates

CS1	Toxin profile	Case isolates (N=857)	CFA/I, CS1, CS2, CS3, CS4, CS5, CS6
		279	23%
Levine et al	ST	310	66%
	LT/ST	268	74%
UNIVERSITY of MARYLAND School of Medicine	ST+LT/ST	578	70%

#2 – Impact of MSD on Linear Growth Faltering

- In general, the Height for Age Z score (HAZ) at enrollment for cases was not significantly different from the HAZ for matched controls
- At the follow-up visit 2-3 months after an episode of MSD
 - Cases had significantly more growth faltering (negative ΔHAZ) compared to matched controls, adjusting for enrollment HAZ and time to follow-up
 - Significantly more infants were stunted

	Enrollment	Follow-up
None	50.7%	41.5%
Mild	30.8%	32.1%
Moderate	12.8%	18.1%
Severe	5.8%	8.4%

Diarrheal pathogens associated with linear growth faltering among MSD cases

- Association with growth faltering was statistically significant for:
 - O-11 m: Cryptosporidium, tEPEC and non-typhoidal
 Salmonella
 - 12-23 m: ST-ETEC, Cryptosporidium, rotavirus and V. cholerae
 - 24-59 m: *V. cholerae*
- Infants and toddlers: *Shigella* was associated with growth faltering when WHO-recommended antibiotics for dysentery were not prescribed
- Toddlers: Prescription of WHO-recommended antibiotics was associated with improved HAZ

#3- MSD-related Mortality

Mortality: Single episode of MSD increases risk of death 8.5-fold over the ensuing ~ 60 days after the initial episode, across all sites

- When: 61% of deaths occurred > 7 days after enrollment; 33% of deaths occurred > 21 days after enrollment
- Where: 44% of cases died at a medical facility; 56% of cases died at home or outside a medical facility

Site-specific Mortality Data

	Cases			<u>_</u>	Control	<u>Odds ratio</u>	
	Total	Died	% Died	Total	Died	% Died	(95% CI)
Mozamb	681	51	7.5%	1296	11	0.9%	13.4 (6.1-29.3)*
The Gambia	1029	39	3.8%	1569	7	0.6%	7.0 (3.0-16.5)*
Kenya	1476	52	3.5%	1883	11	0.5%	5.5 (2.8-10.7)*
Mali	2033	23	1.1%	2064	5	0.2%	5.5 (1.8-16.5)*
Pakistan	1258	16	1.3%	1838	1	0.05%	13.1 (.99-172)#
Bangla	1394	7	0.5%	2465	1	0.04%	12.4 (2.0-77.5)*
India	1568	2	0.1%	2014	1	0.05%	2.6 (0.34-19.6) ^{\$}
All sites	9439	190	2.0%	13129	37	0.3%	8.5 (5.8-12.5)*
		*	p< 0.01;	# p=0.05	51 ^{\$} p=N	S	

Association between enrollment HAZ and risk of death during FU

- Proportional hazard (Cox) regression models for all sites combined, adjusted for enrollment age, site, and days of follow-up
- The risk of death increased with more severe stunting
 - Among children with MSD, for every 0.5 decrease in enrollment HAZ, the estimated hazard of death increased by 30%, 15%, and 46% in the 0-11, 12-23, and 24-59 month strata, respectively

Weighted adjusted hazards ratios by pathogen and risk of death between enrollment and follow-up visit in cases of MSD

	Pathogen present		Pathogen absent		Adjusted hazard ratio (HR)		
	Total	% deaths	Total	% deaths	HR (95% CI)	р	
		0)-11 moi	nths			
Typical EPEC	375	6.4%	3654	2.3%	2·6 (1·6−4·1)	<0.001	
ST-ETEC	256	4·7%	3773	2.5%	1·9 (0·99–3·5)	0.05	
12-23 months							
Crypto	374	4.0%	2830	1.6%	2·3 (1·3–4·3)	0.006	

Summary and Conclusions

- **Burden:** a small number contributed most attributable moderate-to-severe diarrhea cases: rotavirus, *Cryptosporidium*, ST-ETEC, and *Shigella*, and, to a lesser extent, adenovirus 40/41.
- Outcome 2-3 months after illness onset:
 - Significantly more linear growth faltering among cases than controls after a single episode of MSD
 - 8.5 fold higher mortality among cases than controls after a single episode of MSD
- Implications: targeted interventions for a limited no. of pathogens might have a substantial impact

Next Step: Vaccine Impact on Diarrhea in Africa (VIDA)

- Burden, etiology, and adverse clinical consequences of MSD in 3 GEMS countries in sub-Saharan Africa that have introduced rotavirus vaccine
- Mali, The Gambia, and Kenya

Acknowledgments

Many thanks to the superb investigators and staff at each study site, collaborating center, steering committee, and at the CVD coordinating center, to the families who have graciously participated in this study, and to the Bill & Melinda Gates Foundation for financial support.

