

Rotavirus immune responses and correlates of protection (CoP)

Juana Angel, Manuel Franco

® 2004 Derechos Reservados Pontificia Universidad Javeriana Instituto de Genética Humana Bogotá COLOMBIA

Compartmentalization of the immune system

Vaccine 24 (2006) 2718–2731

RV-memory B cells with an intestinal homing phenotype in vaccinees

Serum RV-IgA and RVspecific IgD-, α4β7+, CCR9+ mBc correlate weakly (rho< 0.2) with protection after D2 when vaccinees and placebo recipients are considered together

Rojas OL, et al. Viral Immunol. 2007;20(2):300-11.

Two problems

- Frequencies of RV-specific mBc are not different between vaccinees and placebo recipients and do not correlate well with protection.
- Are we measuring the relevant cells?
- Protection is higher than frequency of children that have RV-IgA.
- <u>Can we indirectly measure the "missing"</u> <u>intestinal antibodies?</u>

RV-specific mBc are enriched in the IgM^{hi}, IgD^{low} subset

J Virol. 2012 Vol 86 p.10829-40. PLOS ONE 2014 Vol 9, 5 e97087

Can we quantify RV-specific intestinal antibodies in blood?

Corthesy B. Autoimmun Rev 2013, 12(6): 661-665.

RV-specific SIg titers in plasma of vaccinees and placebo recipients after D1 or D2 and in protected and non protected individuals

Human Vaccines & Immunotherapeutics 9:11, 2409–2417; November 2013; © 2013 Landes Bioscience

Comparison of RV-IgA and RV-Sig as CoP

Human Vaccines & Immunotherapeutics 9:11, 2409–2417; November 2013; © 2013 Landes Bioscience

Comparison between RV-SIg and RV-IgA

	RV-SIg	RV-IgA	
Specificity vaccination after dose 2	74%	92%	
Sensitivity vaccination after dose 2	48%	50%	
Differences between titers of vaccinees and placebo recipients	Yes	No	
Higher frequencies of protected vaccinees than placebo recipients without the marker	No	Yes	
Specificity protection after dose 2	85%	88%	
Sensitivity protection after dose 2	40%	28%	
Differences in titers between protected and non protected children	Yes	No	
Correlation with protection (vaccinees/placebo)	After Dose 2	After Dose 2	

Human Vaccines & Immunotherapeutics 9:11, 2409–2417; November 2013; © 2013 Landes Bioscience

Conclusions

- IgM RV-Bc are probably composed of both antigen experienced and non experienced cells.
- "Antigen experienced" IgM and switched RV-mBc that express intestinal homing receptors may be good correlates of protection.
- RV-SIg includes RV-IgM and seems more sensitive, but less specific in detecting protection.
- RV-SIg can be complementary to RV-IgA as a correlate of protection in vaccine trials.

In favor of Serum RV-IgA as a correlate of protection

- Reflects duodenal RV-IgA levels 4 months after RV natural infection.
- Correlates with protection after natural infections in children.
- Follows Prentice's first condition as a CoP for RV1 as it correlates with the true clinical endpoint in an individual trial.
- Using meta-analysis it correlates with protection in different vaccine settings for both RV1 and RV5.

Human Vaccines & Immunotherapeutics 10:12, 3659–3671; December 2014; Published with license by Taylor & Francis Group, LLC

Correlation between RV-IgA and protection may vary for each type of vaccine

Human Vaccines & Immunotherapeutics 10:12, 3659–3671; December 2014; Published with license by Taylor & Francis Group, LLC

Against Serum RV-IgA as a correlate of protection

- It fails to fulfill Prentice's second condition for a surrogate endpoint, as it does not "fully capture the treatment's "net effect "on the true clinical endpoint." But it is "reasonably likely to predict clinical benefit", so it is a level 3 endpoint surrogate of protection.
- It is a "non-mechanistic" CoP, hence, any vaccine change affecting this biomarker may or may not affect the clinical endpoint.
- A dose effect (likelihood of not having a RV associated-GE with each 1 log increase in RV-IgA titer) has not been observed.
- Vaccinees without serum RV-IgA have significantly less RV GE than placebo recipients, suggesting that factors other than serum RV-IgA play a role in protection.

Proposals to validate RV-IgA as a level 2 endpoint surrogate marker

- For new human attenuated vaccines: evaluate Vaccine Efficacy with a clinical endpoint (with delayed OPV), assessing serum RV-IgA with a standardized protocol and testing in "parallel" RV1. If the correlation between RV-IgA and protection induced by new RV vaccines is similar to the one observed for RV1, serum RV-IgA could be considered a practical "validated" level 2 surrogate endpoint for this type of vaccine.
- For new heterologuos vaccines: Determine if RV-IgA correlates with protection after RV5 in an individual trial. And repeat with RV5 as for RV1 above.

Human Vaccines & Immunotherapeutics 10:12, 3659–3671; December 2014; Published with license by Taylor & Francis Group, LLC

Prioritization of blood assays as RV correlates of protection against GE

	lgA	SIg	Conform VP4/7 SIg/IgA	Gut homing mBc	Antibody Lymph Sup	Gut homing T cells	Neutralize Ab	IgG
Not present in "naïve" children	+++	++	++	+++	+++	+++	-	-
Mechanistic	+	++	+++	++	++	+	++	-
Practical to measure	+++	+++	+	+	++	+	+++	+++
Reflects intestinal immunity	+	+++	+++	+++	++	+++	+	-
Reflects long lasting protection	++	+	++	+++	++	+++	+	+

Acknowledgements

Former students Angel/Franco Lab:Olga Rojas, Carlos Narváez, Camilo Vasquez, Luz-Stella Rodríguez, Marta Mesa, Daniel Herrera Miguel Parra, Alfonso Barreto

IgM^{hi}, IgD^{low} subsets have different phenotypes

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: B-1 Cell Development and Function

Age-related aspects of human IgM⁺ B cell heterogeneity

Victoria Martin,¹ Yu-Chang Wu,² David Kipling,³ and Deborah K. Dunn-Walters¹

¹Division of Infection, Immunity and Inflammatory Disease, ²Randall Division of Cell and Molecular Biophysics, King's College London Faculty of Life Sciences and Medicine, Guy's Campus, London, United Kingdom. ³Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom

RV-specific IgA bound to secretory component (SIgA) in serum and secretions

- Grauballe PC, Hjelt K, Krasilnikoff PA, Schiotz PO. ELISA for rotavirusspecific secretory IgA in human sera. *Lancet*. 1981;2:588-589.
- Hjelt K, Grauballe PC, Nielsen OH, Schiotz PO, Krasilnikoff PA. Rotavirus antibodies in the mother and her breast-fed infant. *J Pediatr Gastroenterol Nutr*. 1985;4:414-420.
- Rahman MM, Yamauchi M, Hanada N, Nishikawa K, Morishima T. Local production of rotavirus specific IgA in breast tissue and transfer to neonates. *Archives of disease in childhood*. 1987;62:401-405.
- Hjelt K, Grauballe PC, Andersen L, et al. Antibody response in serum and intestine in children up to six months after a naturally acquired rotavirus gastroenteritis. *J Pediatr Gastroenterol Nutr*. 1986;5:74-80.