CORRELATES OF VACCINE-INDUCED IMMUNITY

Stanley A. Plotkin

Why are Correlates of Immunity Important ?

- **1.** Basic immunology
- 2. Enables correct choice of vaccine antigen
- **3.** To permit consistency of potency
- 4. To determine susceptibility of an individual or a population
- **5.** If efficacy trial not feasible or ethical, immunological data enable licensure of vaccine
- 6. Enables bridging from first-generation vaccine to second generation

My Definitions:

<u>Correlate of Protection (CoP)</u>: An immune response that is statistically interrelated with protection

Absolute Correlate: A specific level of response highly correlated with protection: a threshold

<u>Relative Correlate</u>: Level of response variably correlated with protection

<u>Co-Correlate</u>: One of two or more factors that correlate with protection in alternative, additive, or synergistic ways.

mCoP – Mechanistic Correlate of Protection

An immune response that is <u>responsible</u> for protection

nCoP – non-mechanistic Correlate of Protection

Formerly called:

Surrogate: An immune response that substitutes for the true immunologic correlate of protection, which may be unknown or not easily measurable

How Correlates Are Determined

- 1. Levels of passively administered or maternal antibody that protect
- 2. Analysis of immune responses in protected and unprotected subjects in efficacy trials
- 3. Observations made on vaccine failures, e.g. immunosuppressed individuals
- 4. Human challenge studies
- 5. Extrapolation from animal challenge studies, including immunodeficiency

Potential Protective Adaptive Immune Mechanisms Induced by Vaccination

Serum Antibody

Neutralizing Non-neutralizing (cytotoxicity, etc.) Functionality (opsonsphagocytosis) Avidity

Mucosal Antibody

IgA locally produced IgG diffused from serum

CD4+ T cells

B cell help T cell help Help to inflammation (Th17) Cytokines Lysis Tregs

> CD8+ T cells Lysis Avidity

Must Define Protection Against what ?

Infection ? (Local or Disseminated) Disease ? (Mild or severe)

Polio

Protection against disease IgG serum antibodies

Protection against infection IgA- IgG mucosal antibodies

Correlates of Protection Against Pneumococcal Disease

Bacteremia Pneumonia Otitis NP Carriage **ELISA Units** 0.2 – 0.35 2.5 2.0 – 3.5 5.0

The Mechanism of Protection by Vaccination is NOT Necessarily the Same Mechanism as Recovery **From Infection**

Results of Exposure to Measles in Relation to Preexisting Neutralizing Antibodies

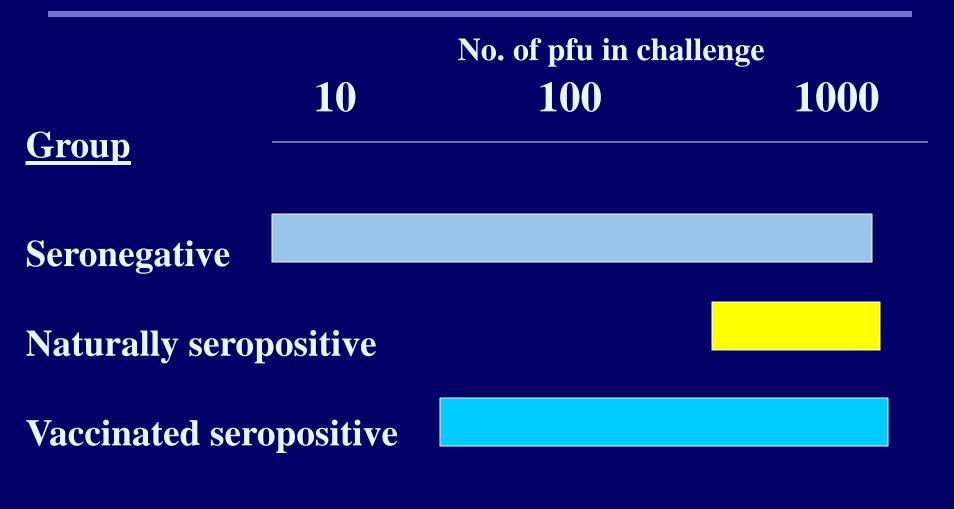
Titer	Clinical	Seroconversion	
(mIU/ml)	Measles		
≤120	100%	100%	
200-1000	0%	63%	
≥1000	0%	0%	

However, B cell deficient humans do recover from measles, whereas

- T cell deficient humans suffer serious and fatal measles.
- Monkeys vaccinated with measles HA alone (low CD4+ T cell response) are protected against rash, but remain chronically viremic.
- Monkeys depleted of CD8+ T cells have increased viremia

Immunity Against Poxviruses

- Primary Infection and recovery from Vaccination: Both B cells and T cells necessary for survival
- Secondary Exposure to Infection in previously vaccinated: Only B cells necessary for protection, although T cells may give partial protection.
- Neutralizing antibodies (ca. 1/20- 1/32) are protective
- However, titers decline and susceptibility to nonfatal smallpox returns at about 20 years postvaccination


A Large Challenge Dose Can Overcome Immunity

"Challenge" of Poliovaccine by OPV

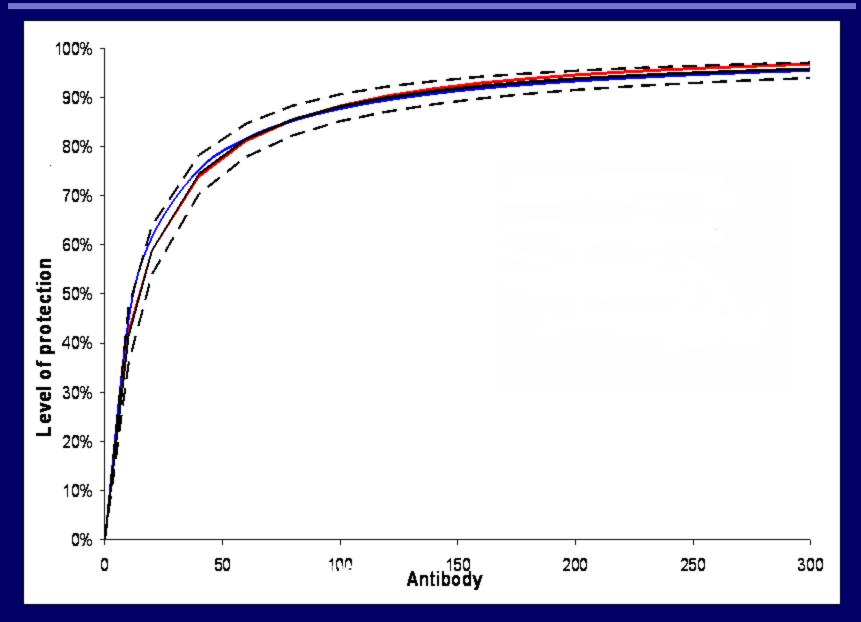
% Infected 7 days after challenge

	Low dose	High Dose
OPV Vaccinees	3%	15%
IPV Vaccinees	30%	70%

Challenge dose of subcutaneously administered Toledo strain (low passage) CMV that infects at least 50% of subjects in different groups

Plotkin, S.A. et al. J Infect Dis 1989;159: 860-865.

Most Current Vaccines Protect Through Antibodies


Major Licensed Viral and Bacterial Vaccines for Humans According to the Mechanism of Disease Prevented by the Vaccine

<u>Viral</u>	Viremia:	Smallpox, Yellow Fever, Measles Mumps, Rubella, Polio, Varicella, Hepatitis A, Hepatitis B	
		Japanese Encephalitis,	
		Tick-Borne Encephalitis	
	Mucosal replication:	Influenza, Rotavirus, HPV	
	Neuronal Invasion:	Rabies	
	Neuronal reactivation	Zoster	
Bacterial	Bacteremia:	Hemophilus influenzae, type b Meningococcal, Pneumococcal, Typhoid (Vi)	
	Mucosal Replication:	Pertussis, Typhoid (Ty 21a)	
	Toxin Production:	Diphtheria, Tetanus, (Pertussis)	
		Cholera, Anthrax	
	Macrophage Replication: Tuberculosis		

Plotkin S. C.R. Acad. Sci. 1999;322:943-951.

Correlates may be relative

Protection Against Influenza and Anti-HA Antibodies

Coudeville, L Personal communication

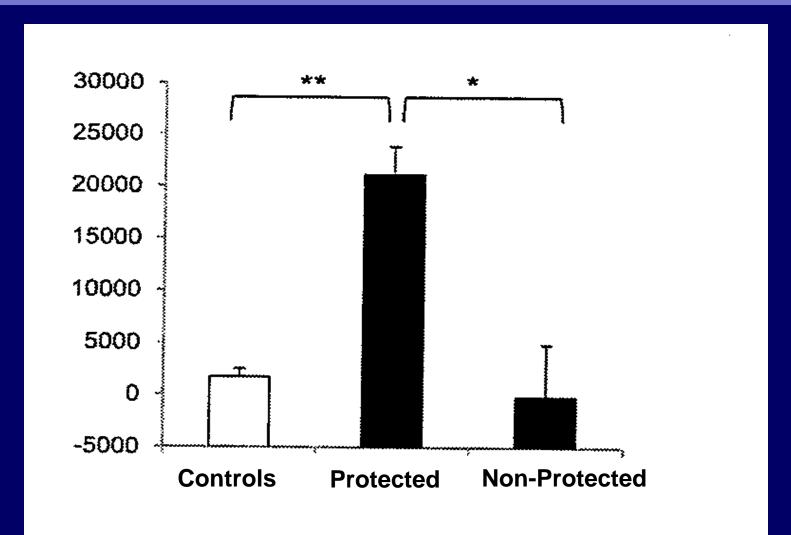
Pertussis Toxin Antibody as Correlate of Protection Against Pertussis Disease

Modsan Titers

Symptoms	Exposure		
Severe	Household 79 U/ml	Non-household 99 U/ml	
Mild	156	124	
None	246	155	

Antibodies must be FUNCTIONAL

ELISA and Bactericidal Antibodies After Group C Meningococcal Polysaccharide Vaccination


Age	ELISA	Bactericidal	Efficacy in
(Yrs)	% Pos.*	% Pos.#	Canada
1	93	18	0%
2	94	35	ר ר
3	92	56	- 41%
4	94	75	
5	84	68	
Adult	100	100	83%

* $\geq 2 \text{ mcg/ml} \quad \# \geq 1/8$

Maslanka SE, et al. *Infect Immun*, 1998, 66:2453-59 DeWals P, et al. JAMA 2001

T Cell Responses as Correlates

The Frequency of TB Antigen-specific IFN-y-secreting T Lymphocyte Correlates with Protective Immunity in cows

Hope JC, et al. Clin Vacc Immunol 2001;18(3),373-379. Bhaff, CVI, 2015

mCoPs for Malaria Vaccines

RTS, S/AS01 Combination of anti circumsporozoite protein antibodies and TNFα producing CD4+ T cells

IV killed sporozoites CD8+ T cells producing interferon in liver best correlate

White, et al, PLoS One 2013; Epstein et al, Science 2011

More than One Factor May Protect as Co-Correlates

Correlates of Immune Protection After Live Influenza Vaccine or Natural Infection (Artificial Challenge in Children)

Serum HAI	Nasal lgA	Shedding
-	-	63%
-	+	19%
+	-	15%
+	+	3%

Inactivated Influenza

- HAI and neutralizing antibodies in serum correlate with protection although Nt antibodies are best correlate.
- Stimulation of Tfh cells correlates with increase in preexisting antibody
- However, in the elderly antibody responses are poor. CD8+ responses, rather than CD4+ responses correlate with antibody rises, and CD8+ CTL independently correlates with protection, particularly granzyme production

Memory may be An mCoP

Long Term Efficacy of Hepatitis B Vaccine Despite Antibody Loss

(Chinese infants assessed 15 yrs. after vaccination)

	Anti-HBs	HBs Ag+	Efficacy
Vaccine	50%	1.9%	89%
Controls	33%	16.7%	

Effector vs. Central Memory as mCoP

- Effector Memory important in short incubation infections like *H. influenzae* type b + meningococcus
- Also can abort HIV infection in rhesus model, given 24-72 hr incubation period for dissemination of HIV
- Central Memory important for long incubation infections and long-term memory (long-lived plasma cells)

Non-Mechanistic Correlates of Protection nCoP

Zoster Vaccine

- Vaccine contains large amounts of infectious and non-infectious varicella virus
- Inactivated virus also protects, as does gE glycoprotein and TLR agonist adjuvant
- VZ antigen stimulates flagging cellular immunity in the elderly
- Correlate of protection is VZ-specific CD4+ lymphocyte proliferation stimulation index ≥ 5.0, but VZ antibody response is used as an nCop

Additional Protective Immune Mechanisms Besides Neutralization and CTL

- Binding antibodies that prevent attachment (Ebola)
- Th17 that attract PMN's and prevent carriage (pneumococcal, TB?)
- Antibody Dependent Cellular Cytotoxic antibody (HIV)
- Stimulation of CD4+ T helper cells that secrete cytokines (pertussis)

Correlates of Protection Against Intestinal Pathogens

- Mucus
- Innate immune responses
- Barrier to vascular entry
- Mucosal lgA Antibody
- Mucosal lgG Antibody
- Serum lgG Antibody
- T cell responses

Protection against Rotavirus Disease (1)

- Heterotypic responses are more important than homotypic
- Responses to VP4 (VP8), VP6 and VP7 are all involved in protection
- Both non-neutralizing and neutralizing responses may be important
- Intestinal IgA induction measured directly in gut or indirectly in serum (Secretory IgA) are key
- However, maternal IgG and possibly IgG induced by prior infection can modify disease

Protection against Rotavirus Disease (2)

- Intestinal bacterial flora may increase or decrease protection by vaccination
- T cell produced interferon plays a role in heterotype protection
- Responses to NSP1 and NSP4 probably contribute to protection
- No single immune response provides an absolute CoP, but several responses provide a relative CoP
- Role of memory B cells should be elucidated

Conclusion

With respect to Correlates of Protection induced by rotavirus vaccination

POLYTHEISM IS PREFERABLE TO MONOTHEISM

(which may be also true for other vaccines)

Conclusions

- 1. The immune system is redundant.
- 2. However, almost all current vaccines work through antibodies in serum or on mucosa that block infection or bacteremia/viremia and thus provide a mechanistic correlate of protection
- 3. The functional characteristics of antibodies as well as quantity are important.
- 4. Antibody may be highly correlated with protection or synergistic with other functions

Conclusions

- Immune memory is a critical correlate:
 Effector memory for short incubation diseases,
 Central memory for long incubation diseases.
- 6. Cellular immunity acts to kill or suppress intracellular pathogens and may also synergize with antibody.
- 7. For some vaccines we have no true mCoP but only useful nCoP for an unknown protective response.
- 8. There may be multiple synergistic, additive or subtractive correlates of protection.

Correlates of Protection

Anthrax

Cellular Response

43