Hepatitis A: Mechanisms of Vaccine Induced Protection

Stephen Feinstone, M.D. George Washington University

Types of Viral Hepatitis

	Α	В	С	D	Е
Source of virus	feces	blood/ blood-derived body fluids	blood/ blood-derived body fluids	blood/ blood-derived body fluids	feces
Route of transmission	fecal-oral	percutaneous permucosal	percutaneous permucosal	percutaneous permucosal	fecal-oral
Chronic infection	no	yes	yes	yes	yes
Prevention	pre/post- exposure immunization	pre/post- exposure immunization	blood donor screening; risk behavior modification	pre/post- exposure immunization; risk behavior modification	ensure safe drinking water

Source: CDC Sentinel Counties Study on Viral Hepatitis

Hepatitis A Virus by Electron Microscopy

HAV Immune-EM

Purified HAV

Feinstone, Kapikian, Purcell, 1973

Moritsugu, 1976

The Team

Structural Phylogenetic Analysis Reveals HAV to Be a 'Primitive' Picornavirus

Wang et al., Nature 2014 doi:10.1038/nature13806

HAV Genome – Gene products – Processing - Assembly

Replication Cycle of HAV

Martin and Lemon, 2006

Identification of HAVCR1 as a cellular receptor for HAV

IFN-activating pathways disrupted by HAV 3C precursor-mediated proteolysis both MAVS and TRIF

Long incubation period Persistent infection in cell culture

Membrane Hijacking by Hepatitis A Virus

HEPATITIS A - CLINICAL FEATURES

Kare complications:

Fulminant hepatitis Cholestatic hepatitis Relapsing hepatitis

Jaundice by age group:

<6 yrs <10% 6-14 yrs 40%-50% >14 yrs 70%-80%

Incubation period:

Average 30 days Range 15-50 days

Chronic sequelae:

None

CLINICAL, VIROLOGIC AND SEROLOGIC EVENTS in HAV INFECTION

eHAV Circulates in Infected Humans and Chimpanzees while Virus Shed in Feces is Not Associated with Membranes

Z. Feng et al. Nature, 496:367-71, 2013

eHAV is Neutralized by Antibody Post-Endocytosis

Z. Feng et al. Nature, 496:367-71, 2013

Model for Post-Endocytic Neutralization of eHAV

EXTRACELLULAR SPACE

Virologic and immunologic events in an acute HAV infection (Chimpanzee)

Pathogenesis: Is hepatitis A immune mediated?

How are HAV infections controled.?

Walker et al, Current Opinions in Virology, 2015

WORLDWIDE PATTERNS of HAV ENDEMICITY

Age stratified prevalence of anti-HAV in different epidemiologic settings

GLOBAL PATTERNS OF HEPATITIS A VIRUS TRANSMISSION

Endemicity	Disease Rate	Peak age of infection	Transmission Pattern
High	Low to High	Early childhood	Person to person Outbreaks uncommon
Moderate	High	Late childhood/ young adults	Person to person Food and water borne outbreaks
Low	Low	Adults	Person to person Food and water borne outbreaks
Very low	Very low	Adults	Travelers Outbreaks uncommon

RISK FACTORS ASSOCIATED WITH HEPATITIS A 1990-2000, UNITED STATES

Source: CDC

Age Distribution of Acute HAV Infections in the U.S.

Source: Armstrong & Bell, Pediatrics, 2002

Protection against hepatitis A

It's the antibody, stupid!

(Paraphrased from Bill Clinton, 1992 Presidential campaign)

PREVENTING HEPATITIS A

- Hygiene
- Sanitation
- Immune globulin (pre- and postexposure)
- Inactivated Hepatitis A vaccine (pre- and post-exposure)

Hepatitis A Prevention – Immune Globulin

largely replaced by vaccine

□ Pre-exposure

travelers to intermediate and high HAV-endemic regions who cannot take HAV vaccine

Post-exposure (within 14 days)

Routine

household and other intimate contacts – vaccine now considered as good as IG

Selected Situations

- institutions (e.g., day care centers)
- common source exposure (e.g., food prepared by infected food handler)

HAV Vaccine Principles

- One serotype
- □ Growth in cell culture
- Low level of serum antibody alone is protective

HAV in Cell Culture

Characteristics of HAV in Cell Culture

- Primary isolation requires long incubation period
- Adaptation Through passage
- Host restriction to Primate cells + a few others
- HAV remains largely cell associated
- No cytopathic effect
- Virus establishes persistent infections

HAV in AGMK cells by Immunofluorescence

Attenuation of HAV after Serial Passage in 1° AGMK Cells

Characteristics of Live HAV Vaccine

- Proper attenuation is difficult to achieve
- Poor Response to oral administration
- Requires multiple i.m. or s.c. dose to achieve adequate immune response
- Antibody responses generally low but durable
- Risk of reversion to virulence?
- Cold chain requirement?

Two live HAV vaccines in use in China/India

Principles of killed HAV vaccine

- Produced in cell culture
- Virus attenuated in humans safety factor
- Purified
- Inactivated by formalin
- Adjuvented Alum Virosomes
- Single dose provides at least short term immunity
- □ Two doses provide protection > 20 years

KILLED HEPATITIS A VACCINES

Highly immunogenic

97%-100% of children, adolescents, and adults have protective levels of antibody within 1 month of receiving first dose; essentially 100% have protective levels after second dose

Highly efficacious

In published studies, 94%-100% of children protected against clinical hepatitis A after equivalent of one dose

Efficacy of a Single Dose of HAV Vaccine (Merck)

HAV Vaccine n=519 Placebo n=518

From Werzberger et al., 1992

Efficacy of a 2 Dose Inactivated HAV Vaccine (GSK)

n = 40,119 Thai schoolchildren

From Innes et al., 1992

HAV ANTIBODY TITERS

Lemon: Rev Med Virol, 1992

Durability of Vaccine Response

Worldwide HAV Vaccine Strategies

Developing Countries

Probably no general use vaccine at this time

Transition Countries

Focus vaccine primarily on children - universal

Developed Countries

Mixed strategy for universal childhood vaccination, high risk individuals, high incidence areas emphasis on children, community outbreaks (children)

Highly Developed - Very low incidence countries

High risk individuals ie. travelers

HA Vaccine U.S. - Initial Strategy 1996

- Children in regions with high rates of hepatitis A (e.g., Alaska Natives, American Indians)
- Persons at increased risk for infection
 - Travelers to intermediate and high HAV-endemic countries
 - Homosexual and bisexual men
 - Intravenous drug users
 - Persons with chronic liver disease (increased Health risk)

HA Vaccine U.S. - Modified Strategy 1999

- Children in regions with high rates of hepatitis A (e.g., Alaska Natives, American Indians)
- Children in communities, counties, states with consistently high disease rates
- Persons at increased risk for infection
 - Travelers to intermediate and high HAV-endemic countries
 - Homosexual and bisexual men
 - Intravenous drug users
 - Persons with chronic liver disease (increased Health risk)

HA Vaccine Strategy US: 2006 - Present

vaccine approved for 12 mo. old children

Universal childhood vaccination at 12 mos

Continue vaccination of high risk individuals

Universal Childhood Vaccination

Benefits

- established delivery system
 - vaccination before risk period
- potential to interrupt transmission
- Other issues & considerations
 - immunogenicity in infants maternal antibody
 - development of combination vaccines
 - duration of protection
 - cost-effectiveness

Hepatitis A Rates in the US: 1952-2007

Hepatitis A Rates by County in the US

Effect of Universal Childhood Vaccine in Argentina Single dose HA vaccine given at 12 months ~95% Coverage Beginning July 2005

Vacchino, 2008

Change in HA Incidence by Age Group in Argentina After UI of 12 Month Old Children

Age (yrs)	Pre- UI (1998-2002)	2007	% decline
<1	32.2	6.1	81.2
1	67.9	11.5	83.1
2-4	201.3	26.1	87.1
5-9	248.8	28.2	88.7
10-14	108.6	17.9	83.6
15-49	20.6	4.4	78.8
50+	5.9	4.7	20.7
Overall	88.5	10.2	88.0

Vacchino, 2008

Argentina Effect of UI on Rate of Severe Hepatitis A

Hospitalized

Pena et al., 2009

Fulimanant Hepatic Failure

Summary

- HAV and HAV pathogenesis remain areas for study
- Serum antibody alone sufficient for protection
- HAV vaccines were first approved 22 years after the virus was identified
- Understanding of the epidemiology of HA has led to rational vaccine use strategies
- Childhood vaccination programs can have a profound impact on HA rates in the entire population
- HA can be controlled by vaccination and could potentially be eliminated

HAV Pathogenesis: Disruption of IFN Signaling by HAV

Yang et al., PNAS, 2007

HAV 3ABC protease precursor is localized to the mitochondrial surface through the transmembrane domain in 3A. The cysteine protease, 3C^{PRO} cleaves the **mitochondrial antiviral signaling** protein (MAVS) disrupting the interferon signaling pathway. Disruption of the IFN pathway may result in

the prolonged incubation period observed in HAV infections and

in the ability of the virus to establish persistent infections *in vitro*

Overall structure.

X Wang et al. Nature 000, 1-4 (2014) doi:10.1038/nature13806

Strategies for Use of HAV Vaccine

- Developing Countries
- Transition
- Developed World

HA Incidence in U.S. by Race and Ethnicity

Live attenuated HAV vaccine -Questions

- Are there extrahepatic site of replication?
- What is the mechanism of hepatic injury; viral or immune mediated?
- Can limited replication produce an adequate immune response?
- Relevance of animal models to human attenuation?
- □ What degree of hepatic injury would be acceptable?

Clinical Manifestations of 8647 <u>Hospitalized</u> Patients 1988 Shanghai Epidemic (primarily 18-40 yo's)

Symptom	%	Clinical Findings	%	Complications	%
Jaundice	84	Hepatomegaly	87	Cholestasis	1.6-5.3
Weight loss	82	Splenomegaly	9	Upper gastrointestinal bleeding	0.5-1.2
Malaise	80	Skin rashes	3	Thrombocytopenic purpura	<0.1 (6 cases)
Fever	76	Mild edema	2	Guillain-Barr? syndrome	<0.1 (4 cases)
Nausea	69	Petechia	2	Pure red cell aplasia	<0.1 (3 cases)
Vomiting	47	Cardiac arrhythmias	0.8	Autoimmune hemolytic anemia	<0.1 (2 cases)
Abdominal pain	37			Transverse myelitis, optic neuritis	<0.1 (1 case each)
Arthralgia	6				

Mean HA Vaccine Coverage in Children 12-24 Months of Age

Information Systems Sentinal Sites, 2006-2009. MMWR, 2010

eHAV is Resistant to Neutralization by Anti-capsid mAbs and Polyclonal Post-convalescent Serum

Infra-red Immunofluorescence Focus Reduction Assay

VP1pX Is Protected in eHAV Particles but Rapidly Degrades to VP1 upon Detergent Treatment

HAV Pathogenesis: Disruption of IFN Signaling by HAV

