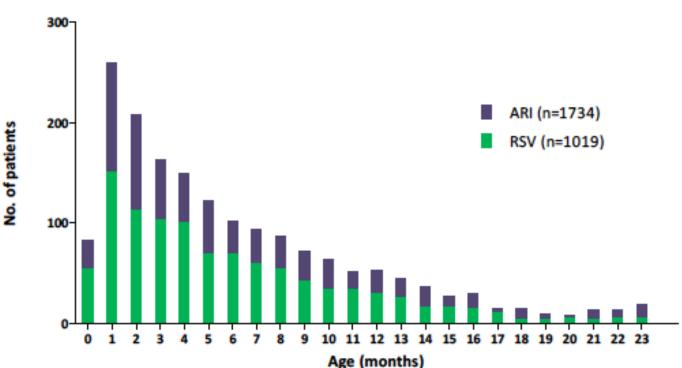
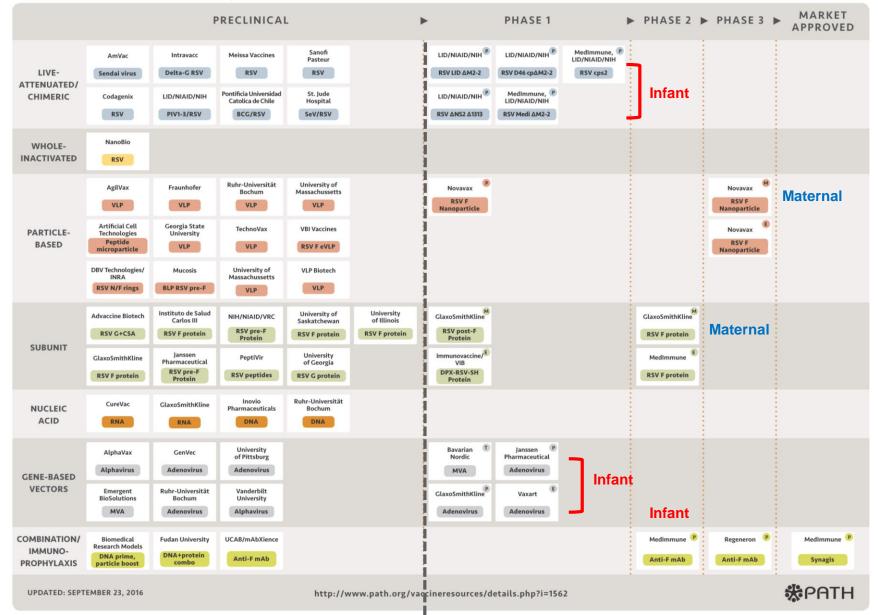
Potential public health impact of RSV vaccines

R. Karron December 2016



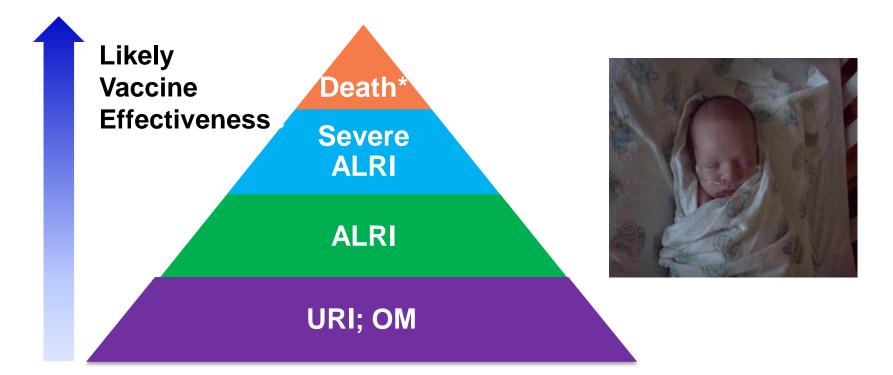
- The leading cause of hospitalization in infants and in many high-income countries; >2 million medical visits annually in US children U5
- The cause of >33 million cases of ALRI, 3.4 million cases of severe ALRI, and 160,000 global deaths (2005 estimates)

Burden of RSV is largely postneonatal


A. HOSPITALIZATIONS

Ferolla FM et al. Am J Respir Crit Care Med. 2013 May 1;187(9):983-90

62 candidates total; 19 in clinical trials


RSV Vaccine and mAb Snapshot

http://www.path.org/vaccineresources/details.php?i=1562

What type of acute RSV illness are we trying to prevent?

The spectrum of acute RSV illness in children

* PERCH: RSV+ CFR=2.8%; 7.2% of all severe/very severe deaths

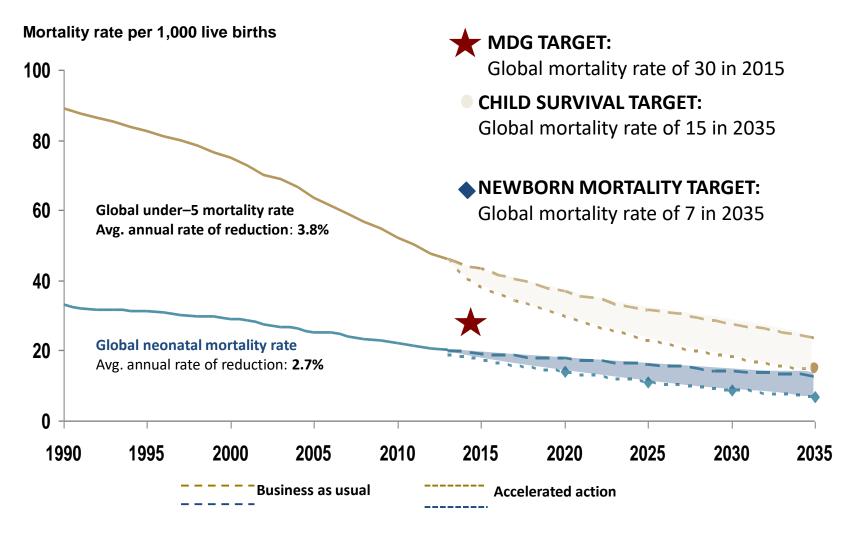
RSV vaccine efficacy: focus on **RSV** LRTI

Severe RSV LRTI	Very Severe RSV LRTI
An infant or young child pres health facility that is part of ascertainment system for the trial who fulfills both the labor clinical criteria below:	the case health facility that is part of the case phase III ascertainment system for the phase III
<u>Laboratory criterion</u> RSV infection as confirmed to purpose, fully validated PCR high specificity and sufficient on upper respiratory samples.	assay with purpose, fully validated PCR assay with sensitivity high specificity and sufficient sensitivity
<u>Clinical criteria</u> Respiratory Infection defined or Difficulty Breathing	as Cough Respiratory Infection defined as Cough or Difficulty Breathing
AND	AND
LRTI defined as FAST BREA WHO criteria OR SpO2 < 95%	
AND	AND
≥ 1 OF THE FOLLOWING FE OF SEVERE DISEASE:	ATURES ≥ 1 OF THE FOLLOWING FEATURES OF VERY SEVERE DISEASE:
Pulse oximetry < 93% AND/OR lower chest wall in-d	rawing Pulse oximetry < 90% AND/OR Inability to feed AND/OR Failure to respond/unconscious

RSV+

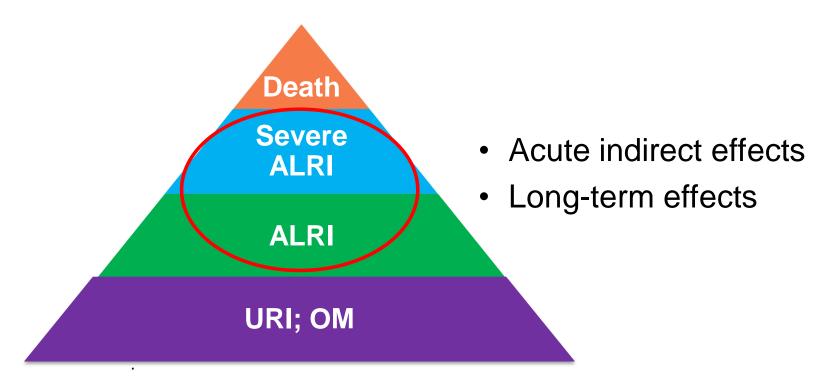
LRTI

Pulse ox


or other

severity

measure



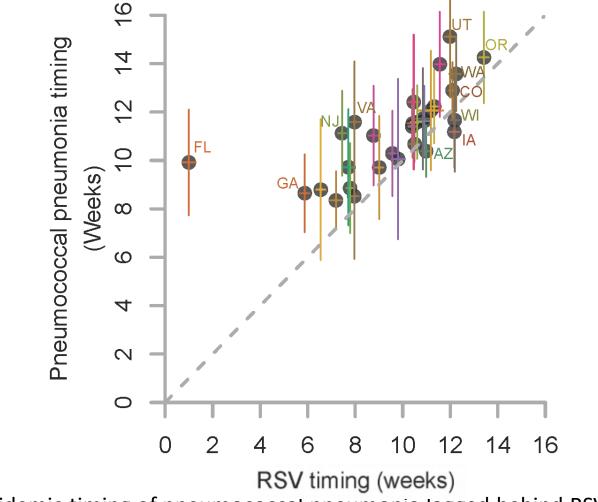
Infant mortality is declining

The potential public health impact of RSV vaccines: focus on prevention of RSV ALRI

Acute indirect effects: viral-bacterial interactions

- RSV- pneumococcal interactions
- RSV and the microbiome

Efficacy of PCV9 against pneumonia South Africa, HIV-uninfected Children

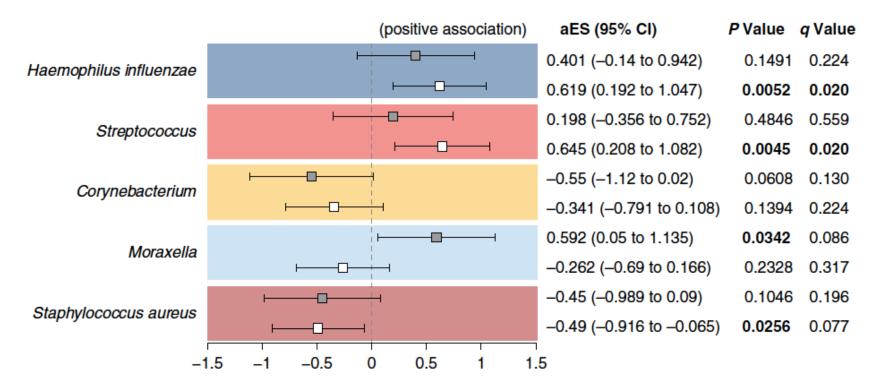

A role for Streptococcus pnemoniae in virus-associated pneumonia

Shabir A Madhi¹, Keith P Klugman^{1,2} & The Vaccine Trialist Group

Nature Med 2004

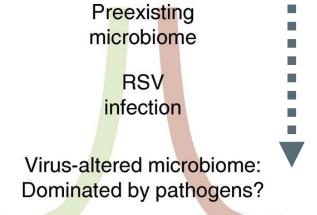
	PCV-9 (n= 17,065)	Placebo (n=17,086)	VE (95% CI)	P-value
First Episode of Pneumonia	348	452	23 (11, 33)	<0.001
Alveolar Consolidation	119	158	25 (4 <i>,</i> 40)	0.02
Influenza A	21	32	34 (-14, 62)	0.1
RSV	64	94	32 (6 <i>,</i> 50)	0.02
PIV 1-3	16	27	41 (-10, 68)	0.09

Correlation between RSV hospitalizations & pneumococcal pneumonia hospitalizations



Average epidemic timing of pneumococcal pneumonia lagged behind RSV by 1.5 wks

Weinberger et al. 2015



Interactions between RSV, nasal microbiome, and host response

"Infants within HI and Strep enriched clusters mounted a distinct inflammatory response... [with] overexpression of genes related to TLR signaling and neutrophil recruitment and activation"

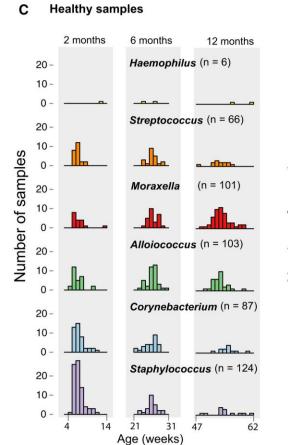
Postulated interactions between RSV, the respiratory microbiome, & disease severity

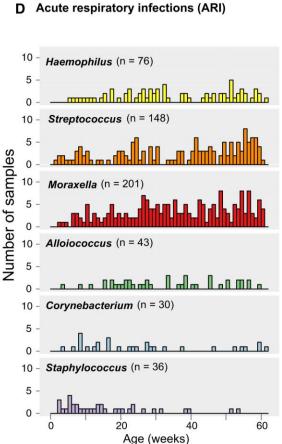
No

Yes

Limited virus-induced inflammation and cell destruction

> Mediators of resilience


Asymptomatic infection or mild illness More extensive virus- and bacteria-induced inflammation and cell destruction

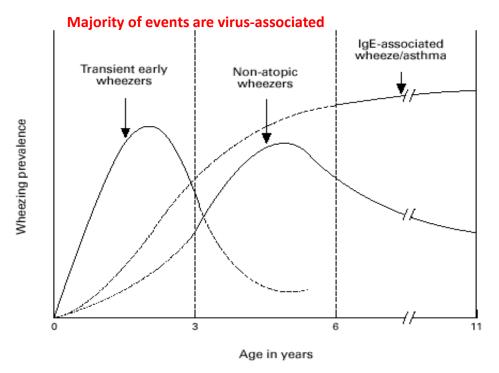

Mediators of airway obstruction

Moderate or severe illness

Changes in infant respiratory microbiome over time and with illness

E Association with ARI

-	Adjusted for virus
11	12
(5.2 - 25)	(4.2 - 35)
p = 1.9e-9	p = 3.2e-6
2.0	1.6
(1.4 - 2.9)	(1.1 - 2.5)
p = 8.6e-5	p = 2.5e-2
1.8 (1.3 - 2.3) p = 1.7e-4	2.2 (1.5 - 3.2) p = 2.8e-5
0.41	0.43
(0.27 - 0.61)	(0.26 - 0.72)
p = 1.3e-5	p = 1.1e-3
0.38	0.35
(0.24 - 0.62)	(0.20 - 0.62)
p = 8.2e-5	p = 2.8e-4
0.29	0.37
(0.19 - 0.44)	(0.23 - 0.58)
p = 7.1e-9	p = 1.8e-5


Cell Host & Microbe 2015 17, 704-715DOI: (10.1016/j.chom.2015.03.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

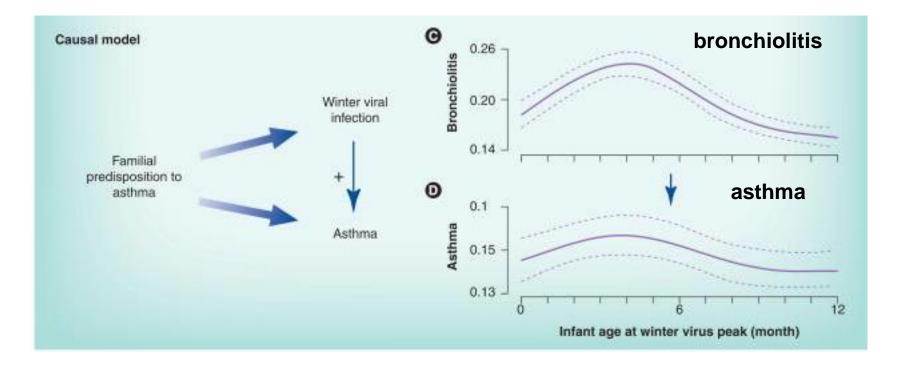
RSV and long-term effects on lung health

Wheezing in early life

- Primary risk for transient early wheeze is viral ALRI, not family history of allergy or asthma
- 60% of wheezing children under 3 years are transient early wheezers*
- Burden of transient early wheeze itself is believed to be substantialbetter metrics needed

Evidence for links between early RSV disease and long-term lung health

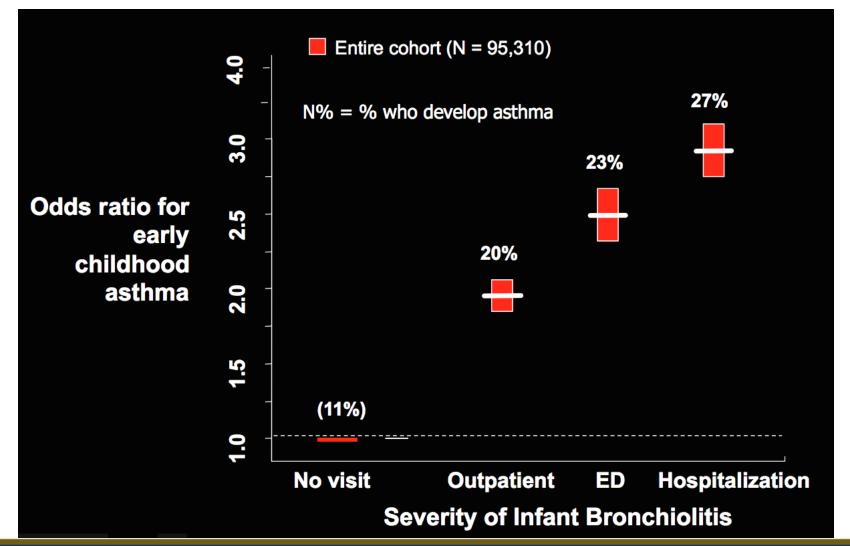
- Ecologic
- Intervention-based


RSV associated with increased asthma risk consistently in all studies

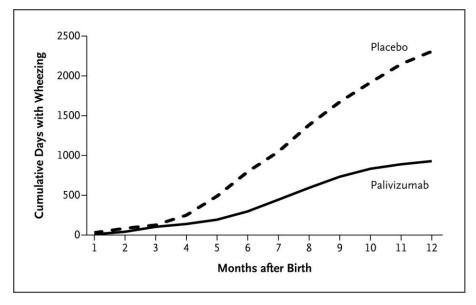
Sims et al. (1978) ⁷⁴	$ \longrightarrow \rangle$	10.07 (1.19–85.57)	0.66
Mok and Simpson (1982) ⁷⁸		2.49 (0.74-8.37)	2.06
Pullan and Hey (1982) ⁷²		1.39 (0.44–4.38)	2.30
Murray et al. (1992) ⁷⁹		3.83 (1.58–9.33)	3.83
Osundwa et al. (1993) ⁸⁰	•	5.39 (2.32-12.53)	4.25
Korppi et al. (1994) ²² —		3.40 (0.30–39.10)	0.51
Sigurs et al. (1995) ²⁰	•	7.21 (2.84–18.27)	3.50
Stein et al. (1999) ²³	•	4.30 (2.16-8.55)	6.40
Schauer et al. (2002) ⁷³	*	8.92 (1.42–55.95)	0.90
Juntti et al. (2003) ⁷¹	•	1.90 (0.86–4.24)	4.72
Singleton et al. (2003) ⁸¹		2.10 (0.73-6.00)	2.74
Fjaerli et al. (2005) ⁷⁶	•	17.70 (5.68–55.13)	2.34
Henderson et al. (2005) ⁷⁷		2.50 (1.43-4.38)	9.61
Escobar et al. (2010) ⁷⁵		4.37 (3.43–5.57)	51.52
Mikalsen et al. (2012) ⁸²	•	1.81 (0.81-4.06)	4.65
Overall (l ² = 44.9% p = 0.031)		3.84 (3.23-4.58)	100.00
0.25	0.5 1 2 4 8 16 32		
No association	Association between I	RSV and Asthma	

Regnier SA et al. Pediatr Infect Dis J 2013;32:820-26.

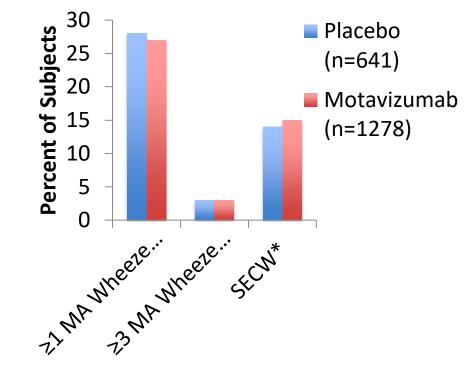
Winter viral infections in the causal pathway for asthma



- Infants who were 4 months of age at the peak of winter viral season were more likely to develop both clinical bronchiolitis and childhood asthma at 5-6 years
- Risk of asthma shifted in any given year with the shift in the peak of the winter viral peak, such that infants born approximately 4 months prior to the first winter viral peak ...were at the highest risk of developing childhood asthma


Dose response relationship between asthma and RSV severity

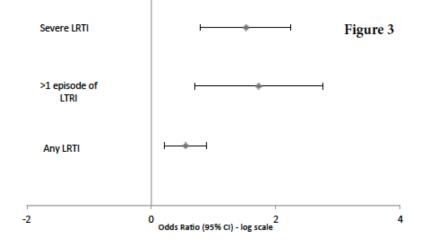
Carroll K et al. J Allergy Clin Immunol 2009;123(5):1055-61.



RSV and wheezing: intervention studies

Palivizumab in healthy late preterm

- Followed to 1 year
- Parent reported illness



Motavizumab in healthy term

- Followed to 3 years
- Medically-attended illness

Beyond wheezing: Abnormal lung fcn in 1-yr-olds after ALRI in infancy

OR of increased RR (>50.6 breaths/minute)

- Children enrolled in the Drakenstein Child Health Study (n=648)
 - All episodes of ALRI assessed
 - Lung function measured at 6 weeks and 1 year
- Any ALRI associated with increased RR; repeated ALRI associated with diminished V_T, increased LCI (evidence of small airways disease)
- Abnormalities observed even when lung function was normal at 6 weeks

22

How can we properly value RSV vaccines?

- Include assessments of all-cause pneumonia and ALRI during RSV vaccine efficacy assessments
 - Pathogen-pathogen interactions
 - Pathogen replacement
- Establish cohorts during efficacy trials that could be followed for long-term wheezing/ lung function outcomes
- Embrace the likely heterogeneity of impact of RSV vaccination on these indirect outcomes
 - Host factors and environmental factors will determine burden of these outcomes and may determine the impact of RSV LRI prevention on these outcomes
 - Heterogeneity of impact on these outcomes likely to be greater than heterogeneity in prevention of severe RSV ALRI
 - Data should be obtained from multiple settings; models should take heterogeneity into account

Thank you

rkarron@jhu.edu

