The regulatory HBx protein contributes to evasion from intrinsic antiviral response

Hepacivirus et Immunité Innée Institut Pasteur Paris

HBV replication cycle

Natural history of HBV infection

Virus outcome: balance between cellular antiviral responses and mechanisms develop by the virus to escape from these antiviral responses

HBx regulatory protein

- Viral HBx is a regulatory protein (17kD)
- HBx is essential for viral replication in vivo (Zoulim et al.,1994)
- HBx has pleiotropic activities (signal transduction, cell cycle, apoptosis, transcription)

HBx is involved in cccDNA transcriptional regulation

- HBV cccDNA is organized into chromatin-like structure as a viral minichromosome: up to 20 nucleosomes containing histones et non histone proteins.
- HBx is required for the initiation and maintenance of HBV transcription in the setting of infection (Lucifora et al., 2011)
- HBx expression correlates with HBV transcription and histone H3 hyperacetylation (Lucifora et al., 2011; Belloni et al., 2009)

Molecular mechanisms involved in HBV cccDNA silencing in infected hepatocytes

Lise Rivière

HBx increases the level of HBV RNAs

HBV wt and X- cccDNAs show different sensitivities to MNase digestion

Long exposure

Silenced HBV X- cccDNA is associated with repressive histone marks

Histone methyltransferase SETDB1 mediates the deposition of H3K9me3 on the cccDNA

HBx restores cccDNA transcription and alleviates chromatin repression

 \checkmark HBx is necessary for viral transcription and replication, in the context of cellular infection by HBV

✓HBx expression correlates with the deposition of activating histone modifications on HBV cccDNA (histone acetylation, H3K4 me3)

✓ In the absence of HBx, repressive epigenetic marks are deposited on HBV cccDNA (H3K9 me3, histone hypoacetylation, recruitment of HP1 γ)

✓HBV silencing is in part mediated by SETDB1

✓ HBV repression can be reverted by the reexpression of HBx

⇒ HBx may counteract an antiviral response that prevents viral transcription via the establishment of repressed chromatin

Working model

Common viral manipulation: subversion of E3 ubiquitin ligase activity

DDB1 : a core subunit of a Cul4a-based E3 ubiquitin ligase complex.

Ubiquitination of cellular protein(s):

Degradation of cellular substrates or modification of their functions

- **7** of virus replication
- Induction of apoptosis
- Transcriptional activity

Cellular factors involved in HBV silencing and counteracted by HBX

Aurélie Ducroux

Identification of Spindlin 1 as a new HBx interacting-protein

Spindlin1:

- Associated with meiotic spindles
- SPIN/SSTY family
- Contains three Tudor-like domains
- Histone reader for dual H3 K4me3-R8me2a methylation pattern
- •Increases rRNA trancription
- •Activator of Wnt/ β -catenin pathway

HBx interacts with endogenous Spindlin1

Spindlin1 represses HBV transcription in the setting of infection

Spindlin1 expression represses HBV transcription in the setting of infection

HBx decreases recruitment of Spindlin1 to cccDNA

dHepaRG cells

Depletion of Spindlin1 increases H3K4me3 on the cccDNA

dHepaRG cells

Spindlin1 represses the transcription of HSV-1 during infection

✓ Spindlin1 is recruited on the cccDNA and represses its transcription in the context of HBV infection

✓ Spindlin1 represses more severely HBV X- virus than wild type virus, suggesting that HBx counteracts Spindlin1 activity on HBV.

✓ Spindlin1 represses the transcription of Herpes Simplex Virus type 1 in the setting of infection

Spindlin1 is a new component of the intrinsic antiviral defense

✓ How Spindlin 1 is recruited on the cccDNA?

✓ How HBx counteracts spindlin1 activity?

✓ Mechanisms involved in cccDNA repression?

Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor

Adrien Decorsière1*, Henrik Mueller1†*, Pieter C. van Breugel1†*, Fabien Abdul1*, Laetitia Gerossier2, Rudolf K. Beran3, Christine M. Livingston3, Congrong Niu3, **Simon P. Fletcher3**, **Olivier Hantz2 & Michel Strubin**

NATURE, VOL531,2016

Indentification of Smc5/6 complex as an HBx interacting partner

Strategy: Tandem affinity purification assay (TAP) hepG2 cells

Smc5/6 complexe is a bona fide substrate of the Cul4/DDB1/HBx complexe

Smc5/6 is a restriction factor for HBV replication and its activity is counteracted by HBx

Nse4 a component of Smc5/6 complex is recruited on cccDNA

✓ Smc5/6 complex is a new HBV restriction factor

 \checkmark HBx counteracts the repressive activity of Smc5/6 complex via the induction of its degradation by the CuIA/DDB1 ubiquitin ligase

✓ How Smc5/6 is recruited on the cccDNA or episomal DNA?

✓ Mechanisms involved in cccDNA repression?

Acknowledgements

Agence nationale de recherches sur le sida et les hépatites virales

Hepacivirus and immunité Innée Institut Pasteur. Paris Eliane Meurs

HBV group

C Neuveut Lise Rivière Aurélie Ducroux Pierrick Morreau Patrick Maillard Sylvie Paulous

Yu Wei Tian Xia

Oncogenèse et Virologie Moléculaire Marie Annick Buendia

*Institut de génétique Humaine M*ontpellier Monsef Benkirane

Laboratory of Hepatitis B virus pathogenesis Marie-Louise Michel Sarah Dion Qiang Deng

Laboratoire de Virologie et génétique Lausanne Didier trono Priscilla Turelli

