The regulatory HBx protein contributes to evasion from intrinsic antiviral response

Hepacivirus et Immunité Innée
Institut Pasteur
Paris
HBV replication cycle

Viral entry
Receptor
cccDNA transcription
Pregenomic RNA
transcription
Endoplasmic reticulum
Budding
ADN+ synthesis
ADN- synthesis
encapsulation
translation
Natural history of HBV infection

Horizontal transmission (adult infection)
- 90% HBV clearance
 - Full immune response (NK+ T+B)
 - Asymptomatic or acute hepatitis B
 - T cell ignorance, exhaustion
 - Asymptomatic chronic hepatitis B
 - Chronic active hepatitis, Cirrhosis, HCC

Vertical neonatal transmission
- Neonatal (childhood infection)
- 5-10% HBV and HBsAg persistence
 - Activation of CD4/8+ T

Virus outcome: balance between cellular antiviral responses and mechanisms develop by the virus to escape from these antiviral responses
HBx regulatory protein

- Viral HBx is a regulatory protein (17kD)
- HBx is essential for viral replication *in vivo* (Zoulim et al., 1994)
- HBx has pleiotropic activities (signal transduction, cell cycle, apoptosis, transcription)
HBx is involved in cccDNA transcriptional regulation

- HBV cccDNA is organized into chromatin-like structure as a viral minichromosome: up to 20 nucleosomes containing histones et non histone proteins.

- HBx is required for the initiation and maintenance of HBV transcription in the setting of infection (Lucifora et al., 2011)

- HBx expression correlates with HBV transcription and histone H3 hyperacetylation (Lucifora et al., 2011; Belloni et al., 2009)
Molecular mechanisms involved in HBV cccDNA silencing in infected hepatocytes

Lise Rivière
HBx increases the level of HBV RNAs

HBV RT-QPCR

dHepaRG

PHH

Days p.i.

Relative HBV RNA level

0 5 10 15

0 50 100 150 200

HBV WT

HBV X-

Days p.i.
HBV wt and X- cccDNAs show different sensitivities to MNase digestion

Infected PHH
MNase digestion of cccDNA + Southern Blot

<table>
<thead>
<tr>
<th>MNase (U/ml):</th>
<th>0</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>X</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Long exposure

Micrococcal Nuclease (MNase)
Silenced HBV X- cccDNA is associated with repressive histone marks

ChIP Q-PCR dHepaRG

HBV cccDNA

-

HBV WT
HBV X-
Histone methyltransferase SETDB1 mediates the deposition of H3K9me3 on the cccDNA

HepaRG

ChIP Q-PCR

RT-QPCR

Control of silencing
HBx restores cccDNA transcription and alleviates chromatin repression

HBV transcription (RT-qPCR)

<table>
<thead>
<tr>
<th></th>
<th>HBV WT</th>
<th>HBV X-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenti Mock</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Lenti HA-HBx</td>
<td>1.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

ChIP qPCR

HBV X- + lentivector

<table>
<thead>
<tr>
<th></th>
<th>Relative binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>0</td>
</tr>
<tr>
<td>AcH3</td>
<td>*</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>*</td>
</tr>
<tr>
<td>H3K9me3</td>
<td>*</td>
</tr>
</tbody>
</table>

(relative binding with respect to IgG)

(Riviere et al., J hepatol 2015)
Conclusion

✅ HBx is necessary for viral transcription and replication, in the context of cellular infection by HBV

✅ HBx expression correlates with the deposition of activating histone modifications on HBV cccDNA (histone acetylation, H3K4 me3)

✅ In the absence of HBx, repressive epigenetic marks are deposited on HBV cccDNA (H3K9 me3, histone hypoacetylation, recruitment of HP1γ)

✅ HBV silencing is in part mediated by SETDB1

✅ HBV repression can be reverted by the reexpression of HBx

⇒ HBx may counteract an antiviral response that prevents viral transcription via the establishment of repressed chromatin
Ubiquitination of cellular protein(s):
- Degradation of cellular substrates or modification of their functions
 - \(\uparrow \) of virus replication
 - Induction of apoptosis
 - Transcriptional activity

Working model

Common viral manipulation: subversion of E3 ubiquitin ligase activity

DDB1: a core subunit of a Cul4a-based E3 ubiquitin ligase complex.
Cellular factors involved in HBV silencing and counteracted by HBX

Aurélie Ducroux
Identification of Spindlin 1 as a new HBx interacting-protein

Spindlin1:
- Associated with meiotic spindles
- SPIN/SSTY family
- Contains three Tudor-like domains
- Histone reader for dual H3 K4me3-R8me2a methylation pattern
- Increases rRNA transcription
- Activator of Wnt/β-catenin pathway

HepG2 Tap-tag

Mock Flag-HA-HBx

DDB1 Cul4B Cul4A PRMT1 Spindlin 1 HBx

kDa

17 25 34 43 55 73 90 110 130
HBx interacts with endogenous Spindlin1

HEK293

<table>
<thead>
<tr>
<th>HA-HBx</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>His-myc-Spin1</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

IP Myc

<table>
<thead>
<tr>
<th>α-HA</th>
<th>α-His</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HA</td>
</tr>
</tbody>
</table>

HepG2

IP Spin1

<table>
<thead>
<tr>
<th>α-HA</th>
<th>α-Spin1</th>
</tr>
</thead>
</table>

Input

<table>
<thead>
<tr>
<th>α-HA</th>
<th>α-tubulin</th>
</tr>
</thead>
</table>
Spindlin1 represses HBV transcription in the setting of infection

Results

- **dHepaRG**

 - **HBV RNA (RT-qPCR)**
 - **Pre-rRNA (RT-qPCR)**
 - **Spindlin1 RNA (RT-qPCR)**

 - **cccDNA (qPCR)**

 - **shCtrl**
 - **shSpin1**

 - HBV wt vs HBV X-
Spindlin1 expression represses HBV transcription in the setting of infection
HBx decreases recruitment of Spindlin1 to cccDNA

dHepaRG cells

cccDNA (ChIP-qPCR)

- IgG
- α-Spin 1

rDNA (ChIP-qPCR)

- IgG
- α-Spin 1
Depletion of Spindlin1 increases H3K4me3 on the cccDNA

dHepaRG cells

![Graph showing impact of Spindlin1 depletion on H3K4me3 levels on cccDNA](image-url)
Spindlin1 represses the transcription of HSV-1 during infection

A

ICP27 RNA (RT-qPCR)

<table>
<thead>
<tr>
<th></th>
<th>MOI 0.01</th>
<th>MOI 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShCtrl</td>
<td>[graph]</td>
<td>[graph]</td>
</tr>
<tr>
<td>ShSpin1</td>
<td>[graph]</td>
<td>[graph]</td>
</tr>
</tbody>
</table>

Hours after infection:

B

HSV1 DNA (qPCR)

<table>
<thead>
<tr>
<th></th>
<th>MOI 0.01</th>
<th>MOI 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShCtrl</td>
<td>[graph]</td>
<td>[graph]</td>
</tr>
<tr>
<td>ShSpin1</td>
<td>[graph]</td>
<td>[graph]</td>
</tr>
</tbody>
</table>

(HepaRG cells)

Ducroux et al., Plos Pathogen 2014
Conclusions

- Spindlin1 is recruited on the cccDNA and represses its transcription in the context of HBV infection.
- Spindlin1 represses more severely HBV X-virus than wild type virus, suggesting that HBx counteracts Spindlin1 activity on HBV.
- Spindlin1 represses the transcription of Herpes Simplex Virus type 1 in the setting of infection.

Spindlin1 is a new component of the intrinsic antiviral defense.

- How Spindlin 1 is recruited on the cccDNA?
- How HBx counteracts spindlin1 activity?
- Mechanisms involved in cccDNA repression?
Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor

Adrien Decorsière1*, Henrik Mueller1†*, Pieter C. van Breugel1†*, Fabien Abdul1*, Laetitia Gerossier2, Rudolf K. Beran3, Christine M. Livingston3, Congrong Niu3, Simon P. Fletcher3, Olivier Hantz2 & Michel Strubin

NATURE, VOL 531, 2016
Identification of Smc5/6 complex as an HBx interacting partner

Strategy: Tandem affinity purification assay (TAP)

hepG2 cells

C

\[
\text{HBx} \quad \text{DDB1} \\
\text{WT} \quad \text{Mut.} \\
\text{SV5V} \quad \text{DDB1} \\
\text{WT} \quad \text{Mut.}
\]

- Fusions
- Smc5
- Smc6
- STAT1

Input (1/10)

IP

Co-IP

- Fusions
- Smc5
- Smc6
- STAT1
Smc5/6 complexe is a bona fide substrate of the Cul4/DDB1/HBx complexe.
Smc5/6 is a restriction factor for HBV replication and its activity is counteracted by HBx
Nse4 a component of Smc5/6 complex is recruited on cccDNA.
Conclusions

✓ Smc5/6 complex is a new HBV restriction factor

✓ HBx counteracts the repressive activity of Smc5/6 complex via the induction of its degradation by the CulA/DDB1 ubiquitin ligase

✓ How Smc5/6 is recruited on the cccDNA or episomal DNA?

✓ Mechanisms involved in cccDNA repression?
Acknowledgements

Hepacivirus and immunité Innée
Institut Pasteur. Paris
Eliane Meurs

HBV group
C Neuveut
Lise Rivière
Aurélie Ducroux
Pierrick Morreau
Patrick Maillard
Sylvie Paulous

Yu Wei
Tian Xia

Oncogenèse et Virologie Moléculaire
Marie Annick Buendia

U1052 INSERM. Lyon
Olivier Hantz
Laetitia Gerossier

Institut de génétique Humaine
Montpellier
Monsef Benkirane

Laboratory of Hepatitis B virus pathogenesis
Marie-Louise Michel
Sarah Dion
Qiang Deng

Laboratoire de Virologie et génétique
Lausanne
Didier trono
Priscilla Turelli