

Metabolic regulation of immunity in chronic HBV infection

Dr Laura Pallett Postdoctoral Research Associate – Prof. Mala Maini

Metabolic regulation of immunity in chronic HBV infection by amino acid deprivation

Dr Laura Pallett Postdoctoral Research Associate – Prof. Mala Maini

Impact of Hepatitis B virus (HBV)

- Hepatotropic, non-cytopathic virus
- HBV establishes persistent liver infection in >300 million people worldwide
- Causes >600,000 deaths annually from associated liver disease
- Persistence is perpetuated by an inadequate virus-specific T cell response

Resultant liver disease is immune-mediated

Differential regulation of tissue damage in HBV infection

Differential regulation of tissue damage in HBV infection

Differential regulation of tissue damage in HBV infection

Paradigm for immunomodulation of organ damage - What mediates the differential regulation of liver immunopathology in different phases of HBV infection?

Innate regulation of adaptive immunity in HBV infection

Role for myeloid-derived suppressor cells in regulating liver immunopathology

Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells

Laura J Pallett, Upkar S Gill, Alberto Quaglia, Linda V Sinclair, Maria Jover-Cobos, Anna Schurich, Kasha P Singh, Niclas Thomas, Abhishek Das, Antony Chen, Giuseppe Fusai, Antonio Bertoletti, Doreen A Cantrell, Patrick T Kennedy, Nathan A Davies, Muzlifah Haniffa & Mala K Maini

< 🖶

What are granulocytic myeloid-derived suppressor cells?

Gabrilovich & Nagaraj Nat. Rev. Immunol. 2009 Gabrilovich, Ostrand-Rosenberg & Bronte Nat. Rev. Immunol 2012

gMDSC expand in hepatotropic viral infection (HBV)

11 colour flow cytometry - peripheral blood

all chronic HBV patients

gMDSC transiently expand in acute HBV in parallel with viraemia

gMDSC transiently expand in acute HBV in parallel with viraemia

Chronic but Not Acute Virus Infection Induces Sustained Expansion of Myeloid Suppressor Cell Numbers that Inhibit Viral-Specific T Cell Immunity

...declining at the onset of liver-specific inflammation

HBV viral load (IU/ml)

gMDSC expand in patients replicating HBV without immunopathology

adapted from: Rehermann, Nat. Rev. Immunol. 2005

gMDSC expand in patients replicating HBV without immunopathology

adapted from: Rehermann, Nat. Rev. Immunol. 2005

gMDSC expand in patients replicating HBV without immunopathology Serum Serum ALT

UCL

4041

30

**

31

inactive

disease

eAg- active

disease

activity

50

gMDSC are increased in the absence of liver inflammation

gMDSC decline before the onset of hepatic flares in eAg- chronic HBV disease

gMDSC decline before the onset of hepatic flares in eAg- chronic HBV disease

patient C2

Ex vivo data point to a role for gMDSC in suppressing liver inflammation

How could they achieve this?

ARTICLE

Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection

Abhishek Das,¹ Matthew Hoare,⁴ Nathan Davies,² A. Ross Lopes,¹ Claire Dunn,¹ Patrick T.F. Kennedy,² Graeme Alexander,⁴ Helene Finney,⁵ Alistair Lawson,⁵ Fiona J. Plunkett,¹ Antonio Bertoletti,^{2,6} Arne N. Akbar,¹ and Mala K. Maini^{1,3}

Global metabolic defect in HBV T cells

- CD3ζ downregulation
- Dysregulation in functionality

gMDSC drive nutrient deprivation

Nutrient deprivation

gMDSC drive nutrient deprivation

Nutrient deprivation

Proliferating T cells require extra amino acids as well as glucose

gMDSC produces arginase I which depletes L-arginine

UC

Pallett et al. Nat Med (2015)

Arginase I is increased and L-arginine is decreased in the serum

L-Arginine quantitation: tandem highpressure liquid chromatography massspectrometry

Do gMDSC reach the liver, the site of HBV infection and pathology?

Do gMDSC reach the liver, the site of HBV infection and pathology?

Upkar Gill Patrick Kennedy QMUL: Barts & the London

*ADAM

gMDSC are further expanded in the intrahepatic compartment in HBV

IHL - intrahepatic leukocytes ** p = <0.01 *** p = <0.001 (Wilcoxon signed-rank test)

gMDSC are further expanded in the intrahepatic compartment in HBV

*** p = <0.001 (Wilcoxon signed-rank test)

What factors promote gMDSC expansion in the liver?

pHSC cells promote enhanced gMDSC proliferation/survival

Image from of H. Singh

thanks to K. Singh/ H. Singh/ E.S. Chambers: pHSC/skin fibroblasts isolation

Can arginase I+ gMDSC suppress T cell immunopathology in the liver?

- HBV is a non-cytopathic virus
- Liver damage: Initiated by HBV-specific CTL, amplified by bystander T cells

Maini et al, JEM 2000 Kakimi et al JEM 2001 Sitia et al, PNAS 2002

Can arginase I+ gMDSC suppress T cell immunopathology in the liver?

• HBV is a non-cytopathic virus

 Liver damage: Initiated by HBV-specific CTL, amplified by bystander T cells

Anatomic localisation of hepatic gMDSC?

Visualisation of gMDSC in contact with T cells in liver vasculature

CD3 red, CD66b brown Immunohistochemistry: A. Quaglia

gMDSC potently suppress expansion of HBV-specific T cells

gMDSC suppress bystander T cells in a partially L-arginine dependent manner

gMDSC suppress bystander T cells in a partially L-arginine dependent manner

Ex vivo: T cells in HBV bare the hallmark of L-arginine deprivation

frequency of circulating gMDSC (as % of myeloid)

Ex vivo: T cells in HBV bare the hallmark of L-arginine deprivation

acute, resolving HBV

---- CD3ζ expression MFI on total T cells

frequency of circulating gMDSC (as % of myeloid)

Metabolic regulation in HBV at the T cell level

System-L amino acid transporters: critical checkpoint controlling T cell metabolism

Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation

Linda V Sinclair¹, Julia Rolf¹, Elizabeth Emslie¹, Yun-Bo Shi², Peter M Taylor¹ & Doreen A Cantrell¹

Hypothesis: L-arginine starvation induces an up-regulation of system-L amino acid transporters on T cells

Compensatory increase in system-L amino acid transport in arginine-starved T cells

Pallett et al. *Nat Med* (2015) * 1.1mM = L-arg in [RPMI] BCH: 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid

Intrahepatic and HBV-specific T cells have increase system-L amino acid transporter expression *ex vivo*

* IHL - intrahepatic leukocytes HBV-specific: HLA-A2-restricted multimer positive

Intrahepatic and HBV-specific T cells have increase system-L amino acid transporter expression *ex vivo*

* IHL - intrahepatic leukocytes HBV-specific: HLA-A2-restricted multimer positive

Amino acid transporters calibrate the T cell response to amino acid starvation

Pallett et al. Nat Med (2015)

Metabolic regulation of T cells in viral hepatitis

<u>A rheostat & potential therapeutic target to control immunopathology</u>

Summary liver-homing chemokine receptor expression gMDSC phenotype CXCR1 CD11b^{high} CD33+ CXCR3 ; HLA-DR⁻ CD14⁻ arginase I liver **gMDSC** CD15+ degranulation (CD63) gMDSC arginase decreased [L-arginine] :: ••• bystander peripheral blood (non-HBV-specific) arginase I low arg T cell HBV-specific metabolic reprogramming **†** CD98 † CD71 ↑ amino acid uptake functional impairment ↓ cytokine production ↓ proliferative capacity

Mala Maini Abhishek Das Antony Chen Dimitra Peppa Jessica Wijngaarden Nick Easom Anna Schurich Kerstin Stegmann Wei-chen Huang Itziar Otano Kasha Singh Simran Singh

> UCL Nathan Davies Maria Jover-Cobos Richard Milne Niclas Thomas Eleni Nastouli Emma Chambers

Kings College London Oltin Pop Alberto Quaglia

University of Dundee Doreen Cantrell

Linda Sinclair

Royal Free Hospital Kito Fusai William Rosenberg Francis Robertson Prof. Davidson

Royal London Hospital Patrick Kennedy Upkar Gill

Agency of Science & Technology Research (A*STAR)

Antonio Bertoletti Muzzlifa Haniffa

www.ucl.ac.uk/maini-group

All donors inc. controls & NHS patients