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How do viruses avoid recognition by the human immune system	



As intracellular parasites, viruses manipulate host cellular 	


machinery to enable successful replication	


	


	


This balance between the host response and immune evasion is a 	


key determinant of the outcome of viral infection	


	



Immunology	

 Virology	



Cell	


Biology	



Interface between 	


3 different disciplines	





How do viruses avoid recognition by the human immune 
system	



	


Functional proteomic approach ‘unbiased view’ of how viruses remodel 
expression of host proteins – emphasis on plasma membrane	


	


	


Development of forward genetic screens (haploid human cell screens) 
and now genome-wide CRISPR screens to study viral interactions with 
the host – example of retroviral silencing	


	





Traditional, target gene approach by flow cytometry to investigate known 
ligands of critical effector cells eg MHC class I:CTL	


	

	



It cannot identify the ‘Known Unknowns’ – unanticipated targets	


	


Can we provide an unbiased overview of cell surface proteins whose 
expression is altered following viral infection? 	

	


	


Combine this knowledge with biology of the virus to try and understand 
why and how different receptors are manipulated 	



How can we identify novel viral immunoevasion targets?	





Plasma membrane protein preparation and SILAC	



pool 

Plasma 
membrane 
preparation 

2. Tryptic 
digestion 

3. Peptide 
fractionation 

7  
divisions 

K K 
K 

K 
R R 

K 

K 

R 
R 

Trypsin 
m/z 

+8/10Da 

Control cells 
Arg0 Lys0 

Cells + virus 
Arg10 Lys8 

Mass spectrometry	


(HPLC-Orbitrap)	





P<1e-­‐11	
  

P<0.0001	
  

P<0.05	
  

P>0.05	
  

Downregula+on	
   Upregula+on	
  Log2	
  (Fold	
  change)	
  

Lo
g 1

0	
  (
In
te
ns
ity

)	
  

0	
   2	
   4	
   6	
   8	
  -­‐8	
   -­‐6	
   -­‐4	
   -­‐2	
  
5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

HLA-­‐A	
  

HLA-­‐C	
  
THBD	
  

ITGA4	
  

MAD5	
  

ITGAL	
  

ITGA2	
  

AXL	
  

IL-­‐12R1	
  

ITGB1	
  
PTPRJ	
  

ITGA7	
  

ITGA1	
  
SDC2	
  

PMP reveals CMV-encoded US2 as a multifunctional 	


modulator of cell surface proteins	



Downregula+on	
  by	
  
US2	
  

Dick van den Boomen	


	

   Plos Path 2015	





Can this same approach determine the global effect of HCMV on 
all cell surface proteins?	
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Can an unbiased screen determine the global effect of HCMV on 
all cell surface proteins?	





SILAC labeling – comparison 3 samples – can increase but complex	



OR	



Chemical Labeling – Tandem Mass Tags (TMT) – increases number of 
samples – up to 10-plex: latest generation orbitrap (Elite/Fusion) 
resolves ratio compression problems	



Advantages: 	

No incorporation of label required	


	

 	

 	

 	

Applicable to primary cells (ex vivo)	



	

 	

multiple biological samples 	

 	

	


	

 	

temporal resolution	



Time resolution can simplify analysis of these changes-	


Differential labeling – metabolic vs chemical?	



Eg Lytic Phase CMV infection – landscape of plasma membrane over 
time	





Does time resolution help interrogate these changes?	
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Label with TMT reagents	
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Time resolution helps point to mechanism	
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TMT allows us to monitor cell surface changes for any protein	
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•  >30 million people infected with 
HIV worldwide and almost 2 
million AIDS related deaths/year	



•  Regulation of cell surface proteins 
by Vpu and Nef	



•  Known targets CD4 and tetherin 
critical for viral pathogenesis	



•  HIV reporter virus encoding GFP	



Plasma Membrane Profiling of HIV-infected cells	



GFP	
  

CD
4	
  

Uninfected	
  

RTi	
  

24	
  hours	
  

72	
  hours	
  

Matheson, N et al. Cell Host & Microbe (2015)	


c/w Stuart Neil KCL 	





SILAC-based proteomic analysis of HIV	


accessory proteins Vpu and Nef	
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SNAT1 downregulation by Vpu impairs proliferation of 
primary human CD4+ T-cells in HIV infection	



Our findings uncover a critical and unappreciated role for alanine in 
T-cell proliferation – and HIV takes advantage of this	
  	



Exogenous alanine is critical for 	


proliferation of primary human CD4+	


 T-cells (J Immunology 1979)	



Matheson, N et al. Cell Host & Microbe (2015)	
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Summary	



	


Functional TMT-based proteomic approaches provide a powerful 
discovery tool to gain an unbiased and uniquely temporal overview of 
cellular proteins whose abundance is altered upon viral infection	


	


But 	


	


Every technique has its limitations:	


	


Proteomics doesn’t tell us why or how…	
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How is newly integrated retrovirus silenced? 	



	


Introduction of viral/foreign DNA: sensed as a ‘danger’ signal 	


initiates ‘alarm response’ -control expression and minimize host cell 
damage:	


	


•  	

 Induction of innate immune response: STING: IFN response	


•  	

 Processing and presentation of viral peptides on MHC-I	


•  	

 Silencing of the DNA to reduce its expression	



	

How does this silencing occur?	
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How is newly integrated retrovirus silenced?	
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Haploid cell genetic screens to identify transcriptional 	


silencers of retroviral insertion	
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Haploid screen for repressors of retroviral integration	



TASOR = Transgene Activation Suppressor	


Part of a new complex in humans: HuSH complex	



Human Silencing Hub	
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Depletion of HUSH components rescues GFP expression	
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TASOR forms a multi-protein complex	
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Genetic and Proteomic data converge on a repressive complex comprising	


TASOR + MPP8 + PHPLN = HUman Silencing Hub = HUSH complex	
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How generalisable are the effects of HUSH?	



HUSH INHIBITION DE-REPRESSES 95% of all GFPdim integrations	
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The chromodomain of MPP8 binds H3K9me3	
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GFPdim lentiviral integrations are packaged into repressive 
chromatin marked by H3K9me3	
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GFPdim lentiviral integrations are packaged into repressive 
chromatin marked by H3K9me3	
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Is repression by HUSH ‘sequence specific’ or a ‘positional effect’	


i.e. governed by the genomic landscape? 	



Genetic screen and validation experiments used lentiviral reporters – is this an antiviral response?	


Stable transfection of HeLa cells - GFP expression 3 cellular promoters (SFFV, PGK and eIF4A) 	



HUSH-mediated repression predominantly governed by genomic landscape surrounding the 
transgene integration site and NOT dependent on a specific DNA sequence	





HUSH is responsible for maintenance of H3K9me3 at  
endogenous genomic loci	
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Model for HuSH function	
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Model for HuSH function	
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Model for HuSH function	
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HUSH is required for early silencing with HIV	
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•  Classic position-effect variation screen (PEV) intensely studied in Drosophila	


	

HUSH is absent from model organisms	



	


•  Orthologues first appear in vertebrates: zebrafish – conserved between fish 

and humans - HUSH represents a novel route to H3K9me3-mediated 
heterochromatin formation in mammalian cells 	



•  Emphasizes the power of forward genetic screens in more diverse systems 
for discovering novel genes and pathways	



Why have HUSH components not been previously identified?	





	


•  Why did our screens not identify known ‘canonical regulators’ of 

heterochromatin – HP1 family. ? Redundancy ? Screens not saturating – 
different mechanisms for silencing at different chromosomal sites. 	



•  How does HUSH fit in/interact with other epigenetic silencers eg KAP1/HP1	


•  Provide evidence for HUSH-dependent histone-based silencing/methylation 

– is HUSH also involved in de novo DNA methylation?	



•  Mechanism of silencing?	



Unanswered questions: 	
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