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How do viruses avoid recognition by the human immune system	


As intracellular parasites, viruses manipulate host cellular 	

machinery to enable successful replication	

	

	

This balance between the host response and immune evasion is a 	

key determinant of the outcome of viral infection	

	


Immunology	
 Virology	


Cell	

Biology	


Interface between 	

3 different disciplines	




How do viruses avoid recognition by the human immune 
system	


	

Functional proteomic approach ‘unbiased view’ of how viruses remodel 
expression of host proteins – emphasis on plasma membrane	

	

	

Development of forward genetic screens (haploid human cell screens) 
and now genome-wide CRISPR screens to study viral interactions with 
the host – example of retroviral silencing	

	




Traditional, target gene approach by flow cytometry to investigate known 
ligands of critical effector cells eg MHC class I:CTL	

	
	


It cannot identify the ‘Known Unknowns’ – unanticipated targets	

	

Can we provide an unbiased overview of cell surface proteins whose 
expression is altered following viral infection? 	
	

	

Combine this knowledge with biology of the virus to try and understand 
why and how different receptors are manipulated 	


How can we identify novel viral immunoevasion targets?	




Plasma membrane protein preparation and SILAC	
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Can this same approach determine the global effect of HCMV on 
all cell surface proteins?	


Mock	
 HCMV	
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Can an unbiased screen determine the global effect of HCMV on 
all cell surface proteins?	




SILAC labeling – comparison 3 samples – can increase but complex	


OR	


Chemical Labeling – Tandem Mass Tags (TMT) – increases number of 
samples – up to 10-plex: latest generation orbitrap (Elite/Fusion) 
resolves ratio compression problems	


Advantages: 	
No incorporation of label required	

	
 	
 	
 	
Applicable to primary cells (ex vivo)	


	
 	
multiple biological samples 	
 	
	

	
 	
temporal resolution	


Time resolution can simplify analysis of these changes-	

Differential labeling – metabolic vs chemical?	


Eg Lytic Phase CMV infection – landscape of plasma membrane over 
time	




Does time resolution help interrogate these changes?	  
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Time resolution helps point to mechanism	
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TMT allows us to monitor cell surface changes for any protein	
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•  >30 million people infected with 
HIV worldwide and almost 2 
million AIDS related deaths/year	


•  Regulation of cell surface proteins 
by Vpu and Nef	


•  Known targets CD4 and tetherin 
critical for viral pathogenesis	


•  HIV reporter virus encoding GFP	


Plasma Membrane Profiling of HIV-infected cells	
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SILAC-based proteomic analysis of HIV	

accessory proteins Vpu and Nef	
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SNAT1 downregulation by Vpu impairs proliferation of 
primary human CD4+ T-cells in HIV infection	


Our findings uncover a critical and unappreciated role for alanine in 
T-cell proliferation – and HIV takes advantage of this	  	


Exogenous alanine is critical for 	

proliferation of primary human CD4+	

 T-cells (J Immunology 1979)	


Matheson, N et al. Cell Host & Microbe (2015)	

c/w Stuart Neil KCL 	




Summary	


	

Functional TMT-based proteomic approaches provide a powerful 
discovery tool to gain an unbiased and uniquely temporal overview of 
cellular proteins whose abundance is altered upon viral infection	

	

But 	

	

Every technique has its limitations:	

	

Proteomics doesn’t tell us why or how…	
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How is newly integrated retrovirus silenced? 	


	

Introduction of viral/foreign DNA: sensed as a ‘danger’ signal 	

initiates ‘alarm response’ -control expression and minimize host cell 
damage:	

	

•  	
 Induction of innate immune response: STING: IFN response	

•  	
 Processing and presentation of viral peptides on MHC-I	

•  	
 Silencing of the DNA to reduce its expression	


	
How does this silencing occur?	
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How is newly integrated retrovirus silenced?	
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Haploid cell genetic screens to identify transcriptional 	

silencers of retroviral insertion	


	  
	  

Iva Tchasovnikarova	

Richard Timms 	




Haploid screen for repressors of retroviral integration	


TASOR = Transgene Activation Suppressor	

Part of a new complex in humans: HuSH complex	


Human Silencing Hub	


Histone 	

Methyltransferase	


Trimethylates ‘lys9’ of histone H3	

known mark of epigenetic 

transcriptional silencing	  
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Depletion of HUSH components rescues GFP expression	
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TASOR forms a multi-protein complex	

Description! Coverage (%)! # Peptides WT! # Peptides Control!

TASOR" 27.4" 35" 0"

MPP8" 18.4" 6" 0"

PERPHLN" 11.6" 6" 0"

IB: MPP8	
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IP: PHPLN	
IP: MPP8	
IP: TASOR	
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Genetic and Proteomic data converge on a repressive complex comprising	

TASOR + MPP8 + PHPLN = HUman Silencing Hub = HUSH complex	
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How generalisable are the effects of HUSH?	


HUSH INHIBITION DE-REPRESSES 95% of all GFPdim integrations	
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The chromodomain of MPP8 binds H3K9me3	


MPP8	   CD!
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GFPdim lentiviral integrations are packaged into repressive 
chromatin marked by H3K9me3	
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GFPdim lentiviral integrations are packaged into repressive 
chromatin marked by H3K9me3	
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Is repression by HUSH ‘sequence specific’ or a ‘positional effect’	

i.e. governed by the genomic landscape? 	


Genetic screen and validation experiments used lentiviral reporters – is this an antiviral response?	

Stable transfection of HeLa cells - GFP expression 3 cellular promoters (SFFV, PGK and eIF4A) 	


HUSH-mediated repression predominantly governed by genomic landscape surrounding the 
transgene integration site and NOT dependent on a specific DNA sequence	




HUSH is responsible for maintenance of H3K9me3 at  
endogenous genomic loci	
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compare	  integra:on	  sites	  of	  GFP	  reporter:	  
GFPdim	  vs	  GFPbright	  popn.	  to	  determine	  where	  HUSH	  acts	  in	  genome	  	  

GFPdim	  integra:ons	  
enriched	  in	  proximity	  to	  
H3K9me3	  
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HUSH is required for early silencing with HIV	
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•  Classic position-effect variation screen (PEV) intensely studied in Drosophila	

	
HUSH is absent from model organisms	


	

•  Orthologues first appear in vertebrates: zebrafish – conserved between fish 

and humans - HUSH represents a novel route to H3K9me3-mediated 
heterochromatin formation in mammalian cells 	


•  Emphasizes the power of forward genetic screens in more diverse systems 
for discovering novel genes and pathways	


Why have HUSH components not been previously identified?	




	

•  Why did our screens not identify known ‘canonical regulators’ of 

heterochromatin – HP1 family. ? Redundancy ? Screens not saturating – 
different mechanisms for silencing at different chromosomal sites. 	


•  How does HUSH fit in/interact with other epigenetic silencers eg KAP1/HP1	

•  Provide evidence for HUSH-dependent histone-based silencing/methylation 

– is HUSH also involved in de novo DNA methylation?	


•  Mechanism of silencing?	


Unanswered questions: 	
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