

Macrophage sensing of HIV-1 entry elicits a type 1 interferon response

Intracellular Transport & Immunity team INSERM U932

Philippe Benaroch

The HIV-1 life cycle in macrophages

Macrophages are versatile cells present in most tissues endowed with a variety of functions, including innate and adaptive immunity

Macrophage paradox : first line of defense against pathogens ...but many pathogens have selected MØ as their niche to replicate

HIV-1-infected macrophages:

- have been found in many tissues & are involved from the onset of the infection to the pathogenesis
- retain infectious particles for extended periods of time (non cytopathic viral cycle)
- · a crucial viral reservoir upon arrest of HAART

-> HIV-infected macrophages represent a viral reservoir

The enigmatic Virus-Containing Compartment

The Virus-Containing Compartment is unique

Dynamics of the Virus-Containing Compartment

Gaudin et al. PLOS one 2013

Not in T lymphocytes -> first host protein macrophage-specific

Molecular basis of the macrophage specificity of the localization of HIV assembly?

-

0)

C

0

60

Macrophages

Illustration: Renaud Chabrier

Gaudin et al. TCB 2013

CD4⁺ T cells

The clustering-responsive Class B scavenger receptor III CD36 binds many ligands

CD36 is mainly expressed on the surface of platelets, endothelial cells, and macrophages. **Not in T lymphocytes**

CD36 is implicated in a wide range of processes, from lipid metabolism to innate immunity and tissue remodelling

The Virus-Containing Compartment contains CD36

In uninfected macrophages: CD36+ compartments are CD9+CD81+Lamp1- & can be connected to the PM

Are CD36+ compartments hijacked by HIV-1?

Upon HIV-1 infection, Gag is recruited to preexisting CD36+ compartments in macrophages

p55 Gag promotes the coalescence of TEM and raft domains

Gag

Env

HIV infection in primary human monocyte-derived macrophages: sensing or no sensing ?

PAMPs

Adapted from Lahaye and Manel 2015

At early steps absence of detectable type I IFN but clear ISG response -> ISG directly induced in an IFN-independent manner?

Macrophages response to HIV-1 infection is independent of the retrotranscriptase (RT) activity

GSEA

HIV-1 sensing by macrophages induces an ISG response observable from 8h post infection

HIV-1 induction of ISGs is reverse-transcription independent

Same results with Nevirapin instead of AZT

Virus titration suggests that sensing and replication are dissociated

Sensing is not due to contaminations present in the viral preparations, nor to cGAMP or plasmid DNA present in the viruses

Genuine sensing of viral infection or contamination? (2/2)

Sensing requires an enveloppe, can occur with different viruses produced by different cells and leads to ISG expression

Is type I IFN responsible for the ISG signature?

Macrophages produce type I IFN at low levels in response to HIV-I

The ISG induction is abolished by type I IFN neutralizing antibodies

Induction of MX1 protein expression is inhibited by type I IFN neutralizing antibodies in both uninfected and infected macrophages

TBKI: a key kinase for sensing

Liu S. et al Science Jan 2015

HIV-1 fusion is required to trigger macrophage response to HIV-1

Ο

9

8

0

same results with the primary strain 132W produced by T cells

Fusion of Virus-Like Particles can trigger sensing in macrophages

-> Nucleic acids are not required for sensing of incoming particles

VLPs pseudotyped with HIV Env (ADA) are sensed -> sensing does not depend on VSVg

CONCLUSIONS

Sensing requires an enveloppe, can occur with different viruses produced by different cells -> different receptors

Sensing occurs in 2 steps: 1) is RT-independent 2) is RT-dependent but independent of the 1st one

ISG induction is TBK I - and type I IFN-dependent

Early sensing is protective -> weak type I IFN induction but efficient ISG upregulation

Early sensing of HIV-1 entry by macrophages

Present: François-Xavier Gobert Nicolas Ruffin **Marion Desdouits** Ester Gea Mallorquí Laurent Zablocki Francesca Graziano Vasco Rodriguez

Past: Aditi Varthaman Andres Titarelli Jérémie Décalf Bruna de Alencar Raphaël Gaudin Stefano Berre Alejandra Garcia-Cattaneo

Curie Institute

Imaging staff (Nikon center) Mabel Jouve (EM) Mathieu Maurin (image analysis) Santy Margues-Ladeira (bioinfo)

Nicolas Manel, Eliane Piaggio, Patrycja Kozik (+ all Inserm U932) Franck Perez, Nelly Gareil, Gaëlle Boncompain

BioPhenics Project: Curie translational department Elaine Del Nerry, Aurianne Lescure & Jacques Camonis

Collaborators

Paul Lehner Cambridge University, UK Matias Ostrowski Buenos Aires, Argentina Georg Borner Max Planck Institute, Germany Marylène Mougel Montpellier, France Jean-Christophe Pagès CHU Tours Florence Niedergang Institut Cochin Lena Alexopoulou CIML Marseille, France

benaroch@curie.fr

DC BIOL