

HBV immunopathogenesis

Robert Thimme

Department of Medicine II University Hospital Freiburg

CD8+ T cells in HBV infection

Function of CD8+ T cells

Failure of T cells

- viral escape?
- T cell exhaustion

CD8+ T-cell responses in HBV infection

Temporal association of CD8+ T-cell response and viral load

Maini, Bertoletti Gastro 2001 Boettler, Thimme, J Virol 2005

Depletion of CD8+ T cells prolongs viremia

Intrahepatic accumulation of CD8+ T-cell responses during viral clearance

Function of CD8+ T cells in HBV

cytolytic mechanisms

Thimme et al. J. Virol. 2003

Identifcation of a novel cell culture model

human sodium taurocholate cotransporting polypeptide (hNTCP)

Methods – Experiment set-up

Assay for co-cultures:

- HBV infected HepG2^{hNTCP} cells
- HLA-matched core₁₈₋₂₇-specific CD8⁺ T cells[§]
- duration: 4 d
- Direct and indirect conditions

Read-out:

- cytoplasmic viral load (qPCR)
- transaminase level (AST)

Untreated control Direct co-culture Transwell cultures Image: Strain of the part of the par

Reduction of viral loads requires cell killing

 $\Delta t = 96 h$ E:T = 1:1

Hoh et al. J Virol 2015

Reduction of viral loads requires cell killing

Hoh et al. J Virol 2015

Function of CD8+ T cells in HBV

CD8+ T cells in HBV infection

Function of CD8+ T cells

Failure of T cells

- viral escape?
- T cell exhaustion

Mechanisms of CD8+ T-cell failure

adapted from Knolle and Thimme, Gastroenterology, 2014

HBV-specific CD8+ T cell response

Repertoire of virus-specific CD8+ T cell epitopes

HLA-B27 is protective in HIV and HCV infection

Hypothesis

HLA-B*27 is a dominant driver of viral escape also in HBV infection

3 experimental approaches:

- HBV sequence analysis in HLA-B*27 positive and negative patients => "HLA-B*27 footprints"
- 2. In silico HLA-B*27 epitope prediction
- 3. Overlapping peptides in acute HBV infection

HLA-B*27 footprints Pol 105-121 ARFYPNVT R R L Q L I M P К Κ Y L Κ F B*27+ S . G К ς. Κ Н KΑ . . B*27-

HLA-B*27:05 binding affinity:

IC₅₀: 1.1 nM

IC₅₀: 1.6 nM

(<50 nM 'optimal binders')

HLA-B*27 restricted CD8+ T cell epitopes

Functional evidence for HLA-B*27 driven viral escape

Variant S....L...

38.3

0.063

Differential role of HLA-B*27 restricted HBVspecific CD8+ T cells

7 epitopes with evidence of viral escape

5 epitopes without viral evolution

Mechanisms of CD8+ T-cell failure

adapted from Knolle and Thimme, Gastroenterology, 2014

Model: T cells and the course of viral Hepatitis

Picture modified from Bertoletti / Ferrari Gut 2012

Exhausted CD8+ T cells are heterogeneous

SnapShot: T Cell Exhaustion

Kristen E. Pauken and E. John Wherry Department of Microbiology and Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA

Exhaustion of HBV-specific CD8+ T cells

Patient cohorts (cHBV patients)

Phenotypic analyses:

- 15 inactive carriers
- 20 cHBV patients under NUC therapy

Gene expression profiles:

- 7 inactive carriers
- 2 cHBV patients under NUC therapy

Methods

 Tetramer-based enrichment of HBV-specific CD8+ T cells (ex vivo)

HCV epitopes (HLA-A*0201-Tetramers)	
AA position	Sequence
Core ₁₈₋₂₇	FLPSDFFPSV
Env ₁₈₃₋₁₉₁	FLLTRILTI
Env ₃₃₅₋₃₄₃	WLSLLVPFV
Pol ₄₅₅₋₄₆₃	GLSRYVARL

Exhaustion of HBV-specific CD8+ T cells

Exhaustion of HCV-specific CD8+ T cells

CD8+ T-cell exhaustion on the transcriptional level

Progenitor and Terminal Subsets of CD8⁺ T Cells Cooperate to Contain Chronic Viral Infection

Michael A. Paley,¹ Daniela C. Kroy,² Pamela M. Odorizzi,¹ Jonathan B. Johnnidis,¹ Douglas V. Dolfi,¹ Burton E. Barnett,¹ Elizabeth K. Bikoff,³ Elizabeth J. Robertson,³ Georg M. Lauer,² Steven L. Reiner,⁴* E. John Wherry¹†

Are terminally exhausted subsets absent in HBV-specific CD8+ T-cell populations?

Progenitor and Terminal Subsets of CD8⁺ T Cells Cooperate to Contain Chronic Viral Infection

Michael A. Paley,¹ Daniela C. Kroy,² Pamela M. Odorizzi,¹ Jonathan B. Johnnidis,¹ Douglas V. Dolfi,¹ Burton E. Barnett,¹ Elizabeth K. Bikoff,³ Elizabeth J. Robertson,³ Georg M. Lauer,² Steven L. Reiner,⁴* E. John Wherry¹†

Eomeshi

RESEARCH ARTICLE

CD39 Expression Identifies Terminally Exhausted CD8⁺ T Cells

Prakash K. Gupta^{1,2}, Jernej Godec^{1,3}, David Wolski⁴, Emily Adland², Kathleen Yates¹, Kristen E. Pauken⁵, Cormac Cosgrove⁶, Carola Ledderose⁷, Wolfgang G. Junger⁷, Simon C. Robson⁸, E. John Wherry⁵, Galit Alter⁶, Philip J. R. Goulder², Paul Klenerman², Arlene H. Sharpe^{3,9}, Georg M. Lauer⁴, W. Nicholas Haining^{1,9,10}*

CD39

virus-specific CD8+ T cells

virus-specific CD8+ T cells

The majority of HBV-specific CD8+ T cells express the memory marker Tcf-1

Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory

Grégoire Jeannet^{a,1}, Caroline Boudousquié^{a,1}, Noémie Gardiol^a, Joonsoo Kang^b, Joerg Huelsken^c, and Werner Held^{a,2}

^aLudwig Institute for Cancer Research Ltd., Lausanne Branch and University of Lausanne, 1066 Epalinges, Switzerland; ^bDepartment of Pathology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655; and 'Swiss Cancer Research Institute, Federal University of Technology Lausanne, 1015 Lausanne, Switzerland

Edited* by Douglas T. Fearon, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom, and approved April 19, 2010 (received for review December 8, 2009)

Variable proliferative response of HBV-specific CD8+ T cells to inhibitory receptor blockade

 \rightarrow PD-L1 blockade has the strongest effect

Bengsch / Thimme, J Hepatol 2014

Is there a signature of exhaustion in HBV-specific CD8+ T cells from asymptomatic carriers?

Network Analysis Reveals Centrally Connected Genes and Pathways Involved in CD8⁺ T Cell Exhaustion versus Memory

Travis A. Doering, 1.2 Alison Crawford, 1.3 Jill M. Angelosanto, 1 Michael A. Paley, 1 Carly G. Ziegler, 1 and E. John Wherry 1.* Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA ²Present address: Hofstra North Shore-LJJ School of Medicine, Hempstead, NY 11549, USA ³Present address: Regeneron Pharmaceutical, Tarrytown, NY 10591, USA *Correspondence: wheny@mail.med.upenn.edu http://dx.doi.org/10.1016/j.immuni.2012.08.021 Transcription Factor Difference Network acute chronic Ikzf2=Helios Helios (IKZF2)

Helios (IKZF2)

- Zinc finger transcription factor
- IKZF proteins found in many hematopoietic cells Helios in T cells
 - expressed in autoreactive thymocytes undergoing clonal deletion
 - expressed in exhausted CD4+ T cells and a subset of T_{req} cells
 - expressed in exhausted CD8+ T cells
 - expressed in a model of peripheral CD8⁺ T-cell tolerance
- Role of Helios in T cells
 - marker of T-cell activation and proliferation
 - induces epigenetic silencing of IL-2 gene expression

Parish et al., Blood 2009 Himmel et al., J Immunol 2013 Daley et al., J Exp Med 2013 Baine et al., J Immunol 2013 Crawford et al., Immunity 2014 Doering et al., Immunity 2014

Summary CD8+ T cells in HBV

Dominance of cytolytic effector functions

Viral escape is associated with HBV persistence

HBV-specific CD8+ T cells less exhausted than HCV specific CD8+ T cells

Unique expression of Helios of HBV-speciic CD8+ T cells

Restoration of HBV-specific CD8+ T cell failure by antiviral therapy

Boni, Ferrari, JCI 1998 Boni, Ferrari, J Hepatol 2003 Boni, Ferrari, Gastro 2012 Penna, ferrari, J Hepatol 2012 Micco, Maini, J Hepatol 2013

Concepts for immunotherapy

Michel et al, J Hepatol 2011

Combination of DNA Prime – Adenovirus Boost Immunization with Entecavir Elicits Sustained Control of Chronic Hepatitis B in the Woodchuck Model

Anna D. Kosinska¹, Ejuan Zhang^{1,2}, Lena Johrden³, Jia Liu¹, Pia L. Seiz⁴, Xiaoyong Zhang^{1,5}, Zhiyong Ma¹, Thekla Kemper¹, Melanie Fiedler¹, Dieter Glebe⁴, Oliver Wildner⁶, Ulf Dittmer¹, Mengji Lu¹, Michael Roggendorf¹*

Plos Pathogens 2013

Enhancing Virus-Specific Immunity *In Vivo* by Combining Therapeutic Vaccination and PD-L1 Blockade in Chronic Hepadnaviral Infection

Jia Liu¹, Ejuan Zhang¹, Zhiyong Ma¹, Weimin Wu¹, Anna Kosinska¹, Xiaoyong Zhang^{1,2}, Inga Möller¹, Pia Seiz³, Dieter Glebe³, Baoju Wang⁴, Dongliang Yang⁴, Mengji Lu¹, Michael Roggendorf¹*

Enhancing Virus-Specific Immunity *In Vivo* by Combining Therapeutic Vaccination and PD-L1 Blockade in Chronic Hepadnaviral Infection

Jia Liu¹, Ejuan Zhang¹, Zhiyong Ma¹, Weimin Wu¹, Anna Kosinska¹, Xiaoyong Zhang^{1,2}, Inga Möller¹, Pia Seiz³, Dieter Glebe³, Baoju Wang⁴, Dongliang Yang⁴, Mengji Lu¹, Michael Roggendorf¹*

Outlook

THANKS!

Department of Medicine II University of Freiburg

Robert Thimme

Tayibe Altay Bertram Bengsch Tobias Böttler Katrin Busch **Tobias Flecken** Nadine Hennecke Alexander Hoh Konstantin Richter Elianna Rodriguez Karolin Schlitt Anita Schuch Dominik Wieland

Christoph Neumann-Haefelin

Janina Bärmann Michael Kiraithe Julia Lang Hendrik Luxenburger Katja Nitschke

Tobias Böttler

Eliana Rodriguez Konstatin Richter

Persistence of Hepatotropic Viruses

FOR 1202

