

TB adaptive immune evasion

May 3rd, 2016

Simone A Joosten Department of Infectious Diseases LEIDEN UNIVERSITY MEDICAL CENTER

TB infection stages

BCG vaccination

Tuberculosis (TB) - interactions

Co-infections or co-morbidities can:

- enhance incidence of TB disease
- increase severity of TB disease
- complicate TB treatment
- prolong contagious time of TB patients and thereby disease spread
- hamper TB diagnostics
- complicate vaccination strategies

But TB also complicates treatment of the co-infections or co-morbidities!

Adaptive immunity in TB disease

BCG vaccination

BCG vaccination study

BCG vaccination in healthy, Dutch adult volunteers

Boer et al., Clin Vacc Immunol, 22(7), 778 (2015)

Immune regulation vs effector responses

Low skin inflammation is associated with higher level of CD8 Tregs

В

Regulatory T-cells

Identification of a human CD8⁺ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4

Simone A. Joosten^{*†}, Krista E. van Meijgaarden^{*†}, Nigel D. L. Savage^{*†}, Tjitske de Boer^{*†}, Frédéric Triebel[‡], Annemieke van der Wal[§], Emile de Heer[§], Michèl R. Klein^{*†}, Annemieke Geluk^{*†}, and Tom H. M. Ottenhoff^{*†¶}

Departments of *Immunohematology and Blood Transfusion, [†]Infectious Diseases, and [§]Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands; and [‡]Immutep S.A., Faculté de Pharmacie, 92296 Châtenay-Malabry, France

Communicated by Johannes van Rood, Europedonor Foundation, Leiden, The Netherlands, March 21, 2007 (received for review November 14, 2006)

European Journal of Immunology

CD39 is involved in mediating suppression by Mycobacterium bovis BCG-activated human CD8⁺CD39⁺ regulatory T cells

Mardi C. Boer¹, Krista E. van Meijgaarden¹, Jérémy Bastid², Tom H.M. Ottenhoff^{*1} and Simone A. Joosten^{*1}

OPEN O ACCESS Freely available online

CD8⁺ Regulatory T Cells, and Not CD4⁺ T Cells, Dominate Suppressive Phenotype and Function after *In Vitro* Live *Mycobacterium bovis-*BCG Activation of Human Cells

Mardi C. Boer, Krista E. van Meijgaarden, Simone A. Joosten[®], Tom H. M. Ottenhoff*[®]

Immune regulation may not be only inhibitory response induced by BCG.....

KLRG1 and PD1 following BCG vaccination

TB patients:

PD1 and KLRG1 on CD4⁺ T-cells, not on CD8⁺ T-cells Increased frequency in active TB patients, highest in cured TB patients

Adaptive immunity in TB disease

Unconventional immunity – donor unrestricted T-cells

DI Godfrey, AP Uldrich, J McCluskey, J Rossjohn & DB Moody Nature Immunology 16, 1114–1123 (2015) doi:10.1038/ni.3298

HLA-E

3 alleles,

2 functional proteins,

single amino acid difference:

HLA-E*0101: position 107= arginine > E^R

HLA-E*0103: position 107= glycine > E^G

E^R and E^G frequencies in population are about equal No significant differences in crystal structure E^G has slightly increased cell surface expression E^G has stronger peptide affinity E^G has increased thermal stability Functional significance?

Strong et al, The Journal of Biological Chemistry, 2003, 278, 5082 Grimsley et al, Human Immunology, 1997, 52, 33

HLA-E in tuberculosis

Only 2 variants described in humans: single peptides can be presented by most (all) individuals \rightarrow <u>potentially</u> <u>interesting vaccine target</u>

HLA-E is not down-regulated by HIV-nef, potentially interesting to use HLA-E peptides for post-exposure vaccination against Mtb in HIV⁺ setting *Cohen et al, Immunity, 1999, 10, 661*

HIV p24 may stabilize HLA-E molecules and thereby even enhance HLA-E surface expression *Nattermann et al, Antivir Ther, 2005, 10: 95*

HLA-E is enriched within Mtb phagosome compared to HLA-A2, HLA-E may preferentially present phagosomal antigens

Grotzke, Lewinsohn et al Plos Pathogens, 2009, 5(4): e1000374

HLA-E restricted T-cell clones can inhibit intracellular growth of Mtb

Mtb specific HLA-E restricted T-cell clones produce Th2 cytokines

0

0.03

IL-13

♠

14

IFNγ

D6-2B1

0

Van Meijgaarden KE, et al. PLoS Pathog. 2015, 11(3): e1004671

cytokine production (pg/ml)

10000

15000

5000

Th1

Th2

TB patients recognize HLA-E TM strongest before therapy, in contrast HLA-A2 TM are increasingly recognized during treatment

HLA-E restricted Mtb specific T-cell clones utilize IL-4 to provide B-cell help

A.

CD80

B cells

17 10

14

+ D2-1B4

8 20 20

+ D6-2F6

43

Adaptive immunity in TB disease

summary

<u>Leiden University Medical Center,</u> <u>Leiden, The Netherlands</u>

Krista E van Meijgaarden Mardi C Boer Corine Prins Louis Wilson Kees Franken Tom HM Ottenhoff Simone A Joosten <u>University of Palermo,</u> <u>Palermo, Italy</u>

Teresa Prezzemolo Nadia Caccamo Francesco Dieli

INMI, Rome, Italy

Linda Petrone Valentina Vanini Franca del Nonno Delia Goletti

