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The heterologous or non-specific effects (NSEs) of vaccines, at times defined as ‘‘off-target effects” suggest
that they can affect the immune response to organisms other than their pathogen-specific intended pur-
pose. These NSEs have been the subject of clinical, immunological and epidemiological studies and are
increasingly recognized as an important biological process by a growing group of immunologists and epi-
demiologists. Much remain to be learned about the extent and underlying mechanisms for these effects.
The conference ‘‘Off-target effects of vaccination” held in Annecy-France (June 8–10 2015) intended to

take a holistic approach drawing from the fields of immunology, systems biology, epidemiology, bioinfor-
matics, public health and regulatory science to address fundamental questions of immunological mech-
anisms, as well as translational questions about vaccines NSEs. NSE observations were examined using
case-studies on live attenuated vaccines and non-live vaccines followed by discussion of studies of pos-
sible biological mechanisms. Some possible pathways forward in the study of vaccines NSE were identi-
fied and discussed by the expert group.
1. Introduction

Our understanding of the immunological landscape is changing
dramatically. We now know that immune memory can be re-
educated, that innate immunity can have ‘‘memory,” that certain
lymphocytes can exhibit innate-like responses, and that vaccines
may have broader specificities that vary with age and sex. Classical
immunology is being recast as we go from murine immunology to
human immunology and as big data is stored, curated and investi-
gated. Clinical, immunological and epidemiological studies appear
to demonstrate that vaccines can affect the immune response to
organisms other than their pathogen-specific intended purpose.
For example, Bacille Calmette-Guerin (BCG), smallpox, measles,
oral polio and yellow fever vaccines may reduce disease and/or
mortality from infections other than tuberculosis, smallpox,
measles, polio, yellow fever, respectively, and some vaccines have
even shown promise when repurposed against certain cancers
and/or autoimmune disorders. These heterologous or non-specific
effects (NSEs) of vaccines, occasionally also termed ‘‘off-target
effects”, suggest that some vaccines can provide greater protection
than their pathogen-specific intended purpose.

To examine vaccines NSEs, the Fondation Mérieux organized a
conference from June 8–10 2015 entitled: ‘‘Off-target effects of vac-
cination” in Annecy, France (‘‘Les Pensières” Conference Centre). The
types of questions about NSEs considered at the workshop were:

� How does trained immunity (innate immune memory) influ-
ence the NSEs of vaccination?

� How does vaccine-induced NSE immunity vary with age and
sex?

� What is the role of inter-pathogen cross-reactivity in the NSEs
of vaccines?

� How do environmental antigens (such as the microbiome) influ-
ence cross-reactivity?

� Are there negative NSEs?
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In addition to addressing fundamental questions of immunolog-
ical mechanisms, the workshop considered the following transla-
tional questions:

� How does understanding the NSEs/trained immunity change
our view of host defence and immunological memory?

� Could NSEs lead to defining a new class of vaccines, or repur-
pose existing ones?

� What is the best way to determine whether the NSEs are real
and important or whether their practical implications are
minor? What data would be required (immunological, clinical,
epidemiological, other) in order to assess the causal
relationship?

� How could these ‘‘off label” observations be used to obtain new
‘‘on label” indications?

The intent of the workshop was to take a holistic approach to
these questions, drawing from the fields of immunology, systems
biology, epidemiology, bioinformatics, public health and regula-
tory science. The workshop was designed to not only advance
the science of vaccinology, but also to consider the implications
of verified NSEs: how could these previously underappreciated
effects be utilized, and what would such an effort entail? The con-
ference assessed the gaps in our knowledge and proposed an
agenda for research.

This report provides a summary of the issues discussed, and the
key findings and areas for future research and development.
2. Defining the scope of NSEs: Case studies

The hypothesis that vaccines have NSEs in addition to their
actions against their targeted pathogens can be illustrated by stud-
ies that evaluated the impact on mortality of measles immuniza-
tion in young children in West Africa [1,2] as well as the
therapeutic effects of BCG on bladder cancer [3]. Nevertheless,
major controversies remain. In 2012–2014, the Strategic Advisory
Group of Experts (SAGE) on immunization requested that the
World Health Organization (WHO) review the evidence concerning
the possible NSEs of routine infant vaccines. SAGE asked the work-
ing group to determine whether the current evidence on NSEs of
BCG, diphtheria–tetanus–whole-cell pertussis vaccine (DTP) and
measles containing vaccines (MV) on all-cause mortality in chil-
dren under 5 years of age is sufficient to lead to changes in policy
recommendations or to warrant further scientific investigations
and, if so, to define the path toward obtaining unequivocal evi-
dence on these issues that would support future robust,
evidence-based adjustments in immunization policies. Two sepa-
rate systematic reviews of human immunologic and epidemiolog-
ical studies were performed [4]. SAGE concluded that findings from
the immunologic systematic review neither excluded nor con-
firmed beneficial or deleterious non-specific immunological effects
of these vaccines on all-cause mortality. The heterogeneous data
and the lack of high-quality evidence in children under 5 years of
age did not allow for definitive conclusions. The systematic review
of epidemiological studies suggested a possible reduction in all-
cause mortality following the administration of BCG and MV, the
effect of MV being stronger in females. The overall effect of DTP
could not be determined due to methodological limitations of the
available literature. Likewise, the results suggested that simultane-
ous administration of (DTP + BCG) versus BCG alone prior to DTP
may be associated with lower mortality while co-administration
of (DTP + MV) may increase the overall mortality rate (Table 1).
The SAGE working group concluded that the overall evidence does
not support a change to the existing policy for BCG, DTP and MV.
Although there was a significant reduction in mortality following
BCG and MV that was not explained by fewer deaths from tubercu-
losis or measles respectively, SAGE stressed the need for more high
quality randomized controlled trials with embedded immunologic
investigations that characterize underlying mechanisms of the
NSEs of vaccines. Investigations should be performed across a
number of countries using standardized protocols to address the
well-recognized risks of bias, and to inform potential policy
changes.

In this meeting report, we discuss NSE observations using live
attenuated vaccines and non-live vaccines followed by possible
biological mechanisms for these NSEs, proposed studies to help
validate these observations, and some possible pathways forward
in the study of NSEs of vaccines.

2.1. NSEs of live-attenuated vaccines

2.1.1. Measles containing vaccine
The NSEs of measles containing vaccines (MV) were first postu-

lated following the analysis of studies comparing mortality in
measles-vaccinated and non-vaccinated children in seven low-
income countries [2]. Indeed, MV reduced all-cause child mortality
after the age of measles vaccination and until 3 or 5 years of age by
30–86% in different studies, which is much greater than the pro-
portion of deaths attributed to acute measles disease. One of the
proposed mechanisms to explain this observation has been that
MV reduces carriage of the bacteria that commonly cause pneumo-
nia and sepsis in children in Africa. Other potential mechanisms
that could contribute in countries with endemic measles infection
may be the ability of MV to prevent the immunosuppressive effects
of measles in depleting B and T lymphocytes [5]; however, this
analysis used only population-based rather than individual data,
and it does not explain the reduction in morbidity seen after MV
in communities where measles has been eliminated [6] or the
increased NSEs of MV (i.e. child survival rate) in the presence of
maternal antibody [7]. In a cohort of children from rural Gambia,
carriage of H. influenzae (OR = 0.36; 95% CI: 0.13, 0.99) and S. pneu-
moniae (OR = 0.25; 95% CI: 0.07, 0.90) was significantly reduced
after vaccination against measles and yellow fever [8].

MV may also have beneficial effects in high-income countries.
In a Danish population-based cohort study, hospital admission
for any infection was significantly lower among recipients of
measles, mumps, and rubella (MMR) vaccine compared to recipi-
ents of inactivated DTaP-IPV-Hib as the most recent vaccine [6].
These observations may be due to beneficial NSEs of MMR.

The beneficial effects of MV on mortality seem to be stronger in
females. The female/male Mortality Rate Ratio (MRR) was 0.63
(95% CI: 0.47–0.84) in a meta-analysis of studies carried out in
Guinea-Bissau; most studies had follow-up to 9 months of age
after early MV or from 9 months to 3 years of age (P. Aaby, unpub-
lished data). Earlier vaccination seems to further enhance the ben-
eficial effect, possibly due to an increased NSE of MV in the
presence of maternal antibodies. Indeed, in two randomized trials
of two-dose MV vaccine schedules, the MRR at 5 years of age was
0.22 (95% CI: 0.07–0.64) in vaccinated children who still had
maternal antibodies at time of measles vaccination compared with
children of similar age who had no maternal antibodies when vac-
cinated [7]; this beneficial effect appears to be neutralized or
reversed when an inactivated vaccine is given with or after MV.
For example, immunization with inactivated DTP vaccine
after MV was associated with higher MRR (MRR = 1.60; 95% CI:
1.14–2.24); most studies had follow-up to 9 months of age after
early MV or from 9 months to 3 years of age. Analysis by sex
showed that the aforementioned DTP/MV effect was statistically
significant only in girls (MRR = 2.36, 95% CI: 1.4–3.9) [9]. Verifica-
tion and mechanistic understanding of these observational studies
are still required.
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2.1.2. Oral polio vaccine
Inactivated polio vaccine (IPV) was first licensed in the USA in

1955 and trivalent live attenuated oral polio vaccine (OPV) was
first licensed in the USA in 1963. OPV was chosen for widespread
use to eradicate polio for several reasons: affordability, conferring
gut immunity and ease of administration resulting in high routine
coverage. As a consequence, polio infection has been reduced by
99% since 1988. The first OPV vaccination campaign in Guinea-
Bissau in 1998 demonstrated that OPV vaccination was associated
with lower MRR for children less than 5 years old irrespective of its
impact on polio (MRR = 0.67; 95% CI: 0.5–0.9) [10]. In a subsequent
randomized trial, OPV administered with BCG at birth was associ-
ated with 32% (0–57%) lower infant mortality than receiving only
BCG [11]. Between 2002 and 2014, 15 national campaigns with
OPV took place in this area. Mortality adjusted for age, season
and calendar time was 19% (5–32%) lower after OPV-campaigns
compared with mortality before vaccination campaigns. The bene-
fit increased with additional doses of OPV (P. Aaby, submitted).
Hence, one can speculate that the many polio eradication cam-
paigns conducted in the last 15–20 years may have played a major
role in reducing child mortality in low-income countries by non-
antigen-specific effects.
2.1.3. Smallpox vaccine
Soon after the introduction of the live attenuated smallpox vac-

cine, it was suggested that it may reduce susceptibility to a number
of other infectious diseases [12]. Due to its impact on reducing the
overall mortality rate, smallpox vaccination was considered as one
of the main reasons for population growth in Europe in early 19th
century [13]. Vaccination campaigns eradicated smallpox, and the
vaccine was stopped in 1980 but the effect on overall mortality
was not examined. The Bandim Health Project is a health and
demographic surveillance site in Guinea-Bissau that investigated
the association between smallpox scar, survival, and HIV infection
in both rural and urban Guinea-Bissau [14,15]. Compared with
individuals without any vaccinia scar, those with a scar had MRR
of 0.22 (95% CI 0.08–0.61) and 0.60 (0.41–0.87) in the two studies
(age range: 25–90 years old). Presence of a vaccinia scar was asso-
ciated with a significantly lower risk of HIV-1 infection in females
(odds ratio OR: 0.49; 95% CI: 0.2–0.98) but had no observed effect
in males (OR: 1.27; 95% CI: 0.5–3.6) (P. Aaby, unpublished data).
Similarly, in a study conducted in Denmark, smallpox-vaccinated
individuals had a reduced risk of hospitalization due to infectious
diseases (hazard ratio HR: 0.84; 95% CI: 0.72–0.98) [16]. Such
immune-enhancing effects of smallpox vaccine may also extend
into the realm of oncology as the risk of developing melanoma in
early childhood as well as survival in patients with malignant
Table 1
Systematic review of the sequence/order of DTP, BCG and MV vaccination and
all-cause mortality in children: WHO Working-Group review [4].

Comparison (model) Effect (95% CI) I2

BCG vs unvaccinateda (Random) 0.53 (0.40–0.72) 62%
DTP-after-BCG vs BCGa,b (Random) 1.38 (0.92–2.08) 71%
MV-after-DTP vs DTPa (Random) 0.54 (0.45–0.64) 49%
DTP-after-BCGa vs DTP-with-BCG (Fixed) 1.92 (1.25–2.93) 0%
DTP-after BCGa vs BCG-after-DTP (Fixed) 1.37 (0.84–2.25) 0%
MV-with-DTP vs MV-after-DTPa (Fixed) 2.30 (1.56–3.38) 0%
DTP-after-MV vs MV-after-DTPa (Random) 2.66 (1.04–6.81) 57%

www.who.int/immunization/sage/meetings/2014/April/3_NSE_Epidemiology_re-
view_Report_to_SAGE_14_Mar_FINAL.pdf.

a As in the WHO immunization schedule.
b Subsequent analysis excluding studies with a poorly-defined control group,

severe frailty bias or severe survival bias gives an effect of 2.56 (95% CI 1.74–3.76) in
girls.
melanoma may also be significantly lower in individuals vacci-
nated against smallpox [17,18]. Not all features associated with
the smallpox vaccine are positive, for instance, it is not a cure as
its therapeutic use in HSV is not recommended by the Advisory
Committee on Immunization Practices [19]. The vaccine was not
effective in the treatment or prevention of recurrent herpes sim-
plex infection, warts or any disease other than those caused by
human Orthopoxviruses [20].

2.1.4. Bacille Calmette-Guerin
BCG is a live-attenuated vaccine that was first used for the pre-

vention of tuberculosis (TB) in 1921. Several sub-strains of BCG
have been developed since the original strain, named according
to the site of origin or manufacturer. In low-income countries,
BCG may reduce all-cause mortality in children before they are
receiving other vaccines like DTP, primarily by reducing death from
pneumonia and sepsis. BCG is recommended at birth in countries
with a high incidence of TB but, in practice, administration is often
delayed. Furthermore, BCG is not administered at birth to low-
birth-weight (LBW) children in many countries. Randomized trials
in LBW children [21,22] and community-based cohort studies
[23,24] showed that the administration of BCG is associated with
lower mortality in children and may contribute to better survival.
A large randomized trial and several observational studies suggest
that the effects of BCG vaccine vary between strains [25], but the
mechanisms for such effects are still unknown. For example, a ret-
rospective analysis of three birth cohorts indicated that the Japa-
nese BCG vaccine, the Serbian BCG vaccine, and the Russian BCG
vaccine were respectively 69%, 43%, and 22% effective against clin-
ically diagnosed tuberculosis [26]. Further work is needed to better
understand the differences between BCG vaccines when evaluating
their NSEs.

Of note, BCG can act as a broad immune stimulant and gener-
ates anti-tumor activity [27–31]. Indeed, intravesical administra-
tion of BCG in bladder cancer demonstrated efficacy in reducing
tumor recurrence in the majority of treated patients [3]. Almost
40 years later, BCG induction and maintenance therapy remains
the predominant immunotherapy for the treatment of non-
muscle invasive bladder cancer (NMIBC). The mechanisms of
action of BCG for bladder cancer therapy is still under investigation
as many immunological processes occur in parallel, but urothelial
cells and both innate and adaptive immune system are thought
to play crucial roles [32].

In summary, live-attenuated vaccines appear to reduce all-
cause mortality in circumstances that cannot be explained by
disease-specific effects, and this suggests that the NSEs may be
useful in both low-income and high-income countries.

2.2. NSEs of non-live vaccines

2.2.1. Diphtheria–Tetanus–Pertussis (DTP) vaccine
Contrary to the beneficial NSEs reported for a number of live-

attenuated vaccines, some studies report an excess in all-cause
mortality among DTP-vaccinated children, especially among girls
[9,24]. The systematic epidemiological review of NSEs conducted
for WHO found an increase in mortality after DTP that was not
statistically significant, with a hazard ratio (HR) of 1.38, 95% CI:
0.92–2.08 for DTP-vaccinated compared with DTP-unvaccinated
children [4]. Though the majority of studies [7–10] suggested a
deleterious effect of DTP, two studies reported a beneficial effect
of DTP and the literature was therefore considered inconsistent
[4]. However, re-analysis of the WHO/SAGE review with exclusion
of studies with a poorly defined control group and an excessively
high mortality rate in the control group due to survival or frailty
bias found a twofold higher mortality (HR: 2.56; 95% CI:
1.74–3.76) in DTP-vaccinated compared to DTP-unvaccinated girls

http://www.who.int/immunization/sage/meetings/2014/april/3_NSE_Epidemiology_review_Report_to_SAGE_14_Mar_FINAL.pdf
http://www.who.int/immunization/sage/meetings/2014/april/3_NSE_Epidemiology_review_Report_to_SAGE_14_Mar_FINAL.pdf
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(P. Aaby, unpublished data). Analysis by sex showed a HR of 1.50
(95% CI: 1.21–1.85) in DTP-vaccinated girls compared to
DTP-vaccinated boys (P. Aaby, unpublished data).

While the specific effects of vaccines are additive and not
affected by the sequence of vaccination, the NSEs might be deter-
mined by the order in which live and non-live vaccines are admin-
istrated [6]. For example, several studies in low-income countries
including a randomized trial have found that receipt of DTP vaccine
rather than MV as the most recent vaccine was associated with
increased mortality in girls [9,33]. In addition, a study in Denmark
noted that the incidence rate ratio for infection-related hospital
admissions was significantly greater (1.62; 95% CI: 1.28–2.05) in
children who received the third dose of the inactivated
DTaP-IPV-Hib vaccine following live MMR vaccine [6]. A similar
effect was found in the review of epidemiological studies in low-
income countries by the SAGE working group, with an effect size
of 2.66 (1.04–6.81) for DTP after MV compared to DTP before MV
(Table 1). Recall that the overall effect of DTP could not be deter-
mined due to methodological limitations of the available literature
by SAGE.

3. Basic biological mechanisms

Much remains to be learned regarding the mechanisms by
which certain live attenuated vaccines could potentially reduce
all-cause mortality. Immunological studies might elucidate the
mechanisms by which NSEs occur, confirm their relative impor-
tance, and provide a guide to which randomized trials are likely
to be most informative and confirmatory. Potential mechanisms
for beneficial vaccine NSEs may include: (a) modulation (enhance-
ment) of type 1 and type 17 T helper (Th1, Th17) cells, memory
CD4 cells, cytokine responses (IL17, IL22, IL 1b, IL6, TNFa1, IFNc),
natural killer (NK) cell memory [34]; (b) enhancement of immune
responses to unrelated antigens as has been observed regarding
the impact of BCG in boosting geometric mean concentration
(GMC) of antibodies against all serotypes of pneumococcus, Hae-
mophilus influenzae type B and tetanus toxoid in a prospective
non-randomized study in Australia [35]; (c) cross-reactivity
between shared epitopes of seemingly unrelated pathogens; and
(d) inducing ‘‘trained immunity” defined as long-term reprogram-
ming of innate immunity that induces adaptive traits and provides
protection against reinfection in a T/B-cell-independent but
monocyte-dependent manner [36].

The concept of ‘‘trained immunity” has recently challenged the
classic dichotomy of innate versus adaptive immunity by studies in
plants, invertebrates and mammals that led to an increasing body
of evidence for innate immune memory [36,37]. In human adults,
immunization with BCG appears to trigger trained immunity
[38]. Indeed, in addition to the classic specific immune response
involving antigen-specific T cells and memory leading to protec-
tion against TB, BCG induces protective effects against unrelated
pathogens (S. aureus, C. albicans, etc.), most likely through epige-
netic reprogramming of monocytes, and non-specific production
of cytokines such as TNF and IL-1b [38]. Of note, trained immunity
has been observed in newborn mice wherein administration of TLR
agonists enhanced cytokine responses to subsequent polymicro-
bial sepsis, associated with more robust phagocytic recruitment
and enhanced survival [39]. Induction of trained immunity may
also underlie similar phenomenon in human newborns in which
bacteremia is associated with up-regulation of mononuclear cell
pattern recognition receptors and histologic chorioamnionitis or
early onset sepsis are associated with reduced risk of late onset
sepsis [40]. Autophagy, i.e. proteolytic degradation of cytosolic
components at the lysosome, is central to BCG induced trained
immunity, by processing microbial PAMPs and presenting them
to the intracellular NOD2 receptors [41].
Trained immunity may also be mediated via hematopoietic
stem cells (HPSCs) and progenitors that detect and respond to
cytokines, microbial agents, and as demonstrated for TLR2-
induced innate immune memory [42]. Such an effect remains to
be formally demonstrated for BCG or other vaccines. Following
exposure to antimicrobial agents, epigenetic modifications may
be propagated through myelopoiesis and could be maintained via
programming of their precursor cells i.e. HSPCs, leading to macro-
phage memory and trained immunity. HSPCs express pattern
recognition receptors (PRRs) including Toll-like receptors (TLRs).
Detection of microbial components by HSPCs drive or promote pro-
duction of ‘‘TLR-derived” cells (i.e. neutrophils, macrophages, den-
dritic cells and NK cells) that display myeloid cell characteristics
such as phagocytosis, cytokine production and antigen presenta-
tion [43]. These results suggest that recognition of microbial com-
ponents by HSPCs during infection may enhance the efficacy of
host defence against infection. Exposure of HSPCs to TLR agonists
alter the function of the macrophages they produce [42]. For exam-
ple, bacterial lipopeptide (TLR2)-stimulated HSPCs generate a
higher proportion of macrophages with reduced inflammatory
response, but preserved phagocytic activity.

As discussed above, another mechanism to explain NSEs may
include cross-reactive epitopes from antigens in the vaccine to
other infectious diseases. This mechanism may have contributed,
for example, to milder disease in the 2009 H1N1 influenza pan-
demic in older subjects. EpiMatrix analysis of conserved 9-mers
suggested that there may be sufficient cross-reactivity in T-cell
epitopes between the epidemic H1N1 strain and the seasonal influ-
enza vaccine (2008–2009) that cross-react, potentially explaining
reduced pathology in the elderly [44]. Accordingly, T-cell epitope
clusters make excellent vaccine candidates with high immuno-
genicity [45]. Thus, NSEs may be due to shared cross-reactive epi-
topes between different pathogens.

As discussed earlier, in contrast to the beneficial effects noted
after immunization with live vaccines, epidemiologic studies have
raised the possibility of negative NSEs after inactivated/killed vac-
cines. Aluminum adjuvant is unlikely to explain these effects
because some non-live vaccines that do not contain aluminum
may have negative NSEs [46,47]. Much remains to be learned about
the extent and mechanisms of such effects from a deeper biological
perspective.

4. Resolving NSEs of vaccinations

As reported above, there is growing evidence that vaccines may
affect mortality from causes other than the disease for which they
were developed and vaccine NSEs are now recognized by a growing
number of immunologists and epidemiologists [40,48]. However,
the topic of NSEs of vaccines is contentious, with much of the evi-
dence coming from one country (Guinea Bissau). Accordingly,
greater insight is needed, as discussed next. Different trial types
may be considered to build the needed scientific base and under-
standing of NSEs. Global molecular/big data approaches may char-
acterize the influence of factors that may confound observed NSEs
(e.g. frailty, demographics, vital signs, concomitant medications,
medical history, etc.). In fact, confounding, i.e., failure to recognize
or account for factor(s) other than the variable of interest that can
affect outcomes, is near universal in non-randomized clinical stud-
ies. Typically these can lead to overestimated effects, and as such,
the necessity for different variations of clinical trials was empha-
sized, as discussed below.

These include confirmatory, explanatory, estimatory or
pragmatic/policy-oriented clinical trials. Confirmatory trials are
in general designed to test a hypothesis, but can face an issue of
prioritization: one should select the hypothesis with the greatest
evidence from the literature or the one with ‘‘most thoughtful”
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implications for public health and policy. Confirmatory clinical tri-
als are often the most expensive. Explanatory trials can be per-
formed to provide clarification of immunological mechanisms or
outcomes (morbidity and mortality for example) which are closely
linked because the knowledge of clinical outcomes may suggest
immunological mechanisms and vice versa. Estimatory trials aim
to measure the magnitude of an effect that would be important
for risk–benefit and cost-benefit models. This type of trial has
major implications for sample size as a function of the background,
magnitude and duration of exposure, and requires multisite stud-
ies in ecologically different settings to reveal any heterogeneity.
Pragmatic trials are intended to evaluate or compare different vac-
cine schedules that might be introduced into a given population.
Intervention opportunities comprise new vaccines versus placebo
or no vaccine, comparison of vaccines, or comparison of the timing
or order of vaccination. No matter which trial is considered, it was
emphasized that it is important for clinical trialists, statisticians
and regulatory agencies to consult early, and question all assump-
tions – including event rates based on historical data.

In an era of global polio and measles eradication efforts, there is
an opportunity to evaluate the impact of these two vaccines on
childhood survival using data from vaccination campaigns under-
taken since 2001. With these considerations in mind, the Bandim
Health Project conducted several randomized trials with vaccines
and vitamin A in Guinea-Bissau. The effect of measles vaccination
campaigns (2006) on childhood mortality between 9 months and
5 years of age was assessed by following vaccinated children for
1 year after immunization. The adjusted mortality rate ratio was
0.80 (95% CI: 0.66–0.96) after the national campaign with a stron-
ger effect in girls (MRR = 0.74, 95% CI: 0.56–0.97) and in children
who had received both routine and campaign MV (MRR = 0.59,
95% CI: 0.36–0.99) [49]. A similar pattern of lower mortality
(19% reduction) was observed following OPV vaccination
campaigns in Guinea-Bissau (2002–2014). The benefit increased
with additional doses of OPV (P. Aaby, submitted).

Turning now to animal studies, the concept of animal challenge
models was discussed as a way to help build the evidence base for
NSEs before engaging in human clinical trials. One important argu-
ment for protective NSE of previous infections or vaccinations
comes from abundant literature demonstrating that previous
infections can induce immunological memory in organisms lacking
adaptive immunity, such as plants or invertebrate animals [36].
There is growing data to support NSEs in animal studies as well.
For example, immunization of mice with BCG protects against sec-
ondary infections with Candida albicans or Schistosoma mansoni, at
least partially mediated via T-cell-independent mechanisms
[50,51]. Moreover injecting mice with an attenuated PCA-2 strain
of C. albicans induced protection toward both a virulent CA-6 strain
and the bacterium Staphylococcus aureus [52]. Importantly, this
protection was also induced in athymic mice, demonstrating a
T-cell-independent mechanism [53]. Following animal challenge
studies, it could also be envisaged that human challenge studies
may be of value to demonstrate NSE of vaccines in a relevant
population. In this case, vaccinate the subjects and challenge with
a different pathogen.

‘‘OMIC” technologies, including proteomics, genomics, tran-
scriptomics, etc. are tools that allow characterization of global
molecular responses to perturbations, including infection or vacci-
nes [54]. OMIC approaches may uncover molecular pathways that
correlate with specific and NSE (off-target) protection. Such corre-
lates of protection are useful biomarkers that may inform develop-
ment of vaccines inducing beneficial NSE/heterologous effects. In
addition, such biomarkers/pathways may potentially also provide
insights into mechanisms of protection. Despite the fact that the
majority of global vaccine use is in children [55], very little is
known about age-specific global molecular changes in response
to vaccines. OMICs studies of new-born and infant vaccines may
define age-specific signatures that if correlated with trained effects
and conventional correlate of protection (e.g. antibody response)
will generate mechanistic hypotheses that can be tested in vitro
and in animal models to inform future vaccine development. Using
OMICs technologies, including transcriptomics and proteomics, a
single-blinded, prospective study is ongoing in infants admitted
to neonatal intensive care units in Guinea-Bissau. Blood is collected
in pre- and post-BCG immunization to assess whether molecular
signatures correlate with trained and adaptive responses.

5. The way forward

A growing body of research in the field of vaccinology suggests
that certain vaccines may have heterologous or non-specific
effects. As an example, major reductions in all-cause mortality
have been consistently noted in observational studies of MV, OPV
and BCG, and in randomized trials their NSEs on reducing mortality
have been 26% for MV, 32% for OPV and 41% for BCG [22,11,33].
Similar effects have also been noted for hospital admission pat-
terns in a high-income setting [6]. However, much of the evidence
has related to all-cause mortality in a small number of low-income
countries in West Africa, and changes in distal outcomes such as
death and admission to hospital are multifactorial and susceptible
to confounding in observational studies. SAGE concluded that fur-
ther observational studies with an inherent risk of substantial bias
would be unlikely to provide conclusive evidence about putative
NSEs on mortality. However, it should be noted that in the field
of NSEs, repeating observational studies has revealed consistent
patterns eventually confirmed in randomized trials. If observa-
tional studies are contemplated, their design and analysis should
mimic the design of a randomized controlled trial. To address
well-recognized risks of bias, efforts should be made to develop
standardized definitions of NSEs and their potential immunologic
mechanisms (heterologous effects, trained immunity, cross-
reactivity, etc.) as well as standardized protocols for both RCTs
and observational studies of mortality effects.

By what process might vaccines be approved for use in inducing
beneficial NSEs? The indications must be clearly defined and tested
in adequately controlled and powered, ideally randomized, con-
trolled trials for new regulatory indications. For a successful regu-
latory path, it may be reasonable to consider several different types
of evidence. Cluster randomization, active controls with different
designs such as comparing timing or vaccine sequencing (e.g. early
versus delayed BCG, DTP3 before versus after MV, and BCG before
versus after DTP1) and comparison of vaccines (e.g. acellular per-
tussis versus whole cell pertussis) are valid and potentially feasible
approaches. The use of biology, including basic science, biomark-
ers, in vitro assay systems [56], network models and disease mod-
els, as regulatory science tools could also be helpful to identify
both candidate mechanisms and correlates of benefit or harm.
Any prospective trial is a critical opportunity for biomarker devel-
opment; carefully designed immunological studies should be an
important part of future randomized trials. Careful trial design
and consensus about the immunological endpoints (what, when)
are required to address the immunological questions. Systems
biology approaches may be particularly informative in providing
a profile of host immune response. A combination of system biol-
ogy and clinical data may also help identify and study candidate
NSEs. As an example, the European Research Infrastructure for bio-
logical data is an organization that pools the substantial volume of
data being generated by publicly funded research, and provides
facilities for testing hypotheses in very large databases. The use
of nanopublication (i.e. the smallest unit of publishable informa-
tion) could also allow the analysis of large, heterogeneous and
decentralized data and the detection of new associations that
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would otherwise be beyond the capacity of human reasoning
[Nanopub.org].

Post-marketing surveillance is also critical. In particular, the
effects of any change to the Expanded Program on Immunization
(especially the introduction of a non-live vaccine or withdrawal
of a live vaccine) should be carefully monitored. One of the major
research questions relates to differential effects by age and by sex,
and future studies should therefore be designed and powered to
examine these key variables. Assessment of the effects due to adju-
vants is also important. For example, the HPV vaccines Gardasil
and Cervarix are similar non-live VLP-based vaccines that induce
Th2 and Th1 skewed responses, respectively, because of the differ-
ences in their adjuvant. Theirs NSEs due to adjuvants could be eval-
uated, at least in preteens, in an RCT involving these two vaccines.
Additional major research areas include characterizing the role of
maternal antibodies (e.g. early priming, boosting effects) as well
as vaccine interaction. Many candidate benefits/harms suggested
during the conference could be well tested in adequately
controlled and powered trials for new regulatory indications.

In conclusion, vaccine NSEs may lead to new uses for old vacci-
nes, or new vaccines that combine induction of adaptive immune
memory and trained immunity for new uses. However, this topic
has not been high on the list of priorities of industrial research
and development organizations. Current principles of evidence
should govern the potential development and evaluation of NSEs
of vaccines. Possible adverse NSEs should also be investigated.
Indeed, high standards for evidence are critically important in NSEs
of vaccines given the complexity of biology, big data, the high sus-
ceptibility to confounding factors, and the sensitivity of immuniza-
tion across the population.

After a century, we still do not understand the mechanisms for
the specific targeted effects of BCG and whole-cell pertussis vac-
cine, and we have no well-defined and accepted correlates of pro-
tection for these vaccines. However, a better understanding of the
mechanisms for the NSEs would facilitate approval of new uses of
these vaccines that exploit any off-target effects. Productive path
forward may include (1) being specific with animal and/or human
challenge models; (2) conducting age- and species-specific in vivo,
in vitro, and in silico mechanistic studies [56]; (3) developing con-
trolled human infection models to ‘‘demonstrate” effects and (4)
once animal and human challenge models show effects, set-up
multiple large studies in several countries from a wide range of
geographic locations and burden of disease settings using common
protocols and endpoints. Emphasis must be put on deciphering
putative immunological mechanisms so that correlates of non-
antigen specific protection can inform future studies. Building
and testing the science chain from biology to biomarkers to clinical
outcome may provide suitable data to be evaluated by regulatory
agencies to consider approval for new vaccine indication.
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