Development of a live attenuated pertussis vaccine

Camille Locht camille.locht@pasteur-lille.fr

Annecy, November 11-13, 2015

Althouse and Scarpino *BMC Medicine* _############### DOI 10.1186/s12916-015-0382-8

RESEARCH ARTICLE

Open Access

Asymptomatic transmission and the resurgence of *Bordetella pertussis*

Benjamin M. Althouse* and Samuel V. Scarpino

Interpretation Although a clear role for the previously suggested mechanisms still exists, asymptomatic transmission is the most parsimonious explanation for many of the observations surrounding the resurgence of *B. pertussis*. These results have important implications for *B. pertussis* vaccination policy and present a complicated scenario for achieving herd immunity and *B. pertussis* eradication.

Baboon studies

Live attenuated *B. pertussis* for intranasal administration

- ✓ Mucosal administration
 - Induction of systemic and mucosal immune responses
- ✓ Ease of administration
- Persistence of the bacteria in the host
 - Long-lived immune responses

 Reduced number of administrations to induce protection
- ✓ Potential as a multivalent vaccine

Safety - natural biology of pertussis

- -B. pertussis = strictly upper-respiratory pathogen (no dissemination)
- -No fever (although high fever after WCV)
- -Pertussis = rare in AIDS patients (Cohn *et al.*, 1993) (in contrast to *B. bronchiseptica*)
- -B. pertussis = extremely sensitive to erythromycin
- -Very limited survival of *B. pertussis* in environment (Porter & Wardlaw, 1993)

Feasibility

-B. bronchiseptica in dogs and pigs (2-days old) (Bey et al., 1981; De Jong, 1987)

Locht et al., Curr. Opin. Microbiol., 2001

Attenuated B. pertussis strain BPZE1 (DNT- PTRE TCT-)

Drastic attenuation of B. pertussis BPZE1

One week after i.n. infection, histology of the BPZE1-infected mice was similar to that of the control mice

Infection with BPSM induced strong peribronchiovascular infiltrates associated with hypertrophy of the bronchiolar epithelial cells

IFN-yR KO mice

Infection of MyD88 KO mice

Booster effect in protection against H3N2

Protection against RSV disease

Protection against B. pertussis challenge after i.n. vaccination of infant mice with BPZE1

aPV

Naive

BPZE1

d7

Longevity of BPZE1-induced immunity

First-in-man clinical trial

Study Objectives

First-in-man, dose-escalating, placebo-controlled, double blind, safety trial

Primary Objective

Assess general safety and local tolerability in the respiratory tract after single ascending dose of BPZE1

✓ Secondary Objectives

- Evaluate colonization of the human respiratory tract after a single ascending dose of BPZE1
- Evaluate immune responses to *B. pertussis* after a single ascending dose of BPZE1

Phase I Trial Design

Solicited AE at two-week visit

	Placebo	Low dose	Medium Dose	High dose	
Cough	1	3	2	0	
Nasal congestion	1	4	3	2	
Epista×is	0	0	0	0	
Rhinnorhoea	2	5	1	2	
Sneezing	3	2	3	1	
Ear pain	0	1	0	1	
Eye pain	0	0	0	0	
Dyspnoea	0	0	0	0	

Colonization by BPZE1

Culture positive subjects								
Dose	Subject ID	Day 4	Day 7	Day 11	Day 14	Day 28		
Low	110							
Medium	228							
High	334							
	343							
	344							
	345							
	346							

Antibody responses

Thorstensson et al., PLoS One., 2014

Conclusions

- ✓ BPZE1 is safe in all pre-clinical models
- ✓ BPZE1 is safe in adult male volunteers
- ✓ BPZE1 induces strong protection against infection in mice & baboons
- ✓ BPZE1 can colonize human respiratory tract
- ✓ BPZE1 induces immune responses in all colonized human volunteers
- ✓ BPZE1 has off-target beneficial effects in mice

Future directions

- √ Phase Ib trial with higher dose/larger volume
- √ Further analysis of immune responses
- ✓ Development of a new formulation (e.g. freeze-dried)
- √ Evaluation of other methods for application
- √ Construction of recombinant BPZE1 derivatives

Main differences in phase Ib compared to phase Ia

- ✓ Higher vaccine doses $(10^7, 10^8, 10^9 \text{ vs. } 10^3, 10^5, 10^7)$
- ✓ Larger vaccine volume (0.4 ml per nostril vs. 0.1 ml)
- ✓ Inclusion of both males and females
- ✓ Exclusion of subjects with either anti-PT or anti-PRN IgG
- ✓ One group with low anti-PT but high anti-PRN IgG levels
- ✓ Specific exclusion criterion regarding history of depression or suicidal attempt
- ✓ Quantification of bacteria in nasopharyngeal specimen

Secondary Objectives

- 1- To assess the colonization of the human respiratory tract by BPZE1
- 2 To assess the B and T cell immune responses to PT, FHA, PRN and fimbriae 2/3:
- IgG and IgA in serum and in nasopharyngeal aspirate; cytokines after stimulation with *B.pertussis* antigens and unrelated antigens.
- + cytokine levels in nasopharyngeal aspirate.
- 3 To collect data on #1 and #2 in a small group of subjects with high PRN antibody levels (only highest vaccine dose).

Art is long, and time is fleeting

Longfellow, Voices of the night, 1839

Times will come

"when the unthinkable becomes the thinkable and the impossible actually happens"

Institut Pasteur de Lille Center for Infection and Immunity

N. Mielcarek

R. Antoine

A.-S. Debrie

P. FeunouFeunou

H. Kammoun

D. Raze

C. Locht

Washington University

W. E. Goldman J. Engle

NUS, Singapore

S. Alonso Rui Li

ILiAD Biotechnology

K. Rubin

K. Solovay

M. Thalen

U. Oklahoma

J. Papin

NUI Maynooth

B. Mahon
H. Kavanagh
C. Skerry

Imperial College London

P. Openshaw C. Schnöller

Inserm Transfert

J. Weinbach D. Sondaz

Innogenetics

A. Van Broekhoven
F. Bosman
R. Bral
M. Nobels
G. Deschamps
M. Verhaeghe

Inserm

S. Boy
A. Puech
C. Kubiak
L. Stankovski

SAB

M. Granström M. Roumiantzeff R. Dobbelaer

IDMC

R. Dobbelaer
P. Olin
R. Norrby
O. Launoy

SMI/KTA

R. Thorstensson B. Trollfors

N. Al-Tawil

I. Skilving

J. Bergström

A. Törner

L. Wehlin

M. Jahnmatz

H. Hallander

M. Ljungman

