

Pertussis modelling

Contributions of natural, vaccine immunity to epidemiology

A/Prof Jodie McVernon, Head, Modelling & Simulation Unit, Melbourne School of Population & Global Health, The University of Melbourne and Murdoch Childrens Research Institute

Pertussis: biology, epidemiology and prevention Les Pensieres, Fondation Merieux Conference Centre, 11-13 November 2015

Overview

- Pertussis resurgence Australia as a case study
- Modelling Australian pertussis trends
- Understanding the past, predicting the future
- Conclusions, context and next steps

Pertussis resurgence - background

- Resurgence of pertussis (whooping cough) observed recently in a number of developed countries
- Initial uncertainty re: ascertainment bias
- Associated infant deaths in US, UK indicate true increase
- How might vaccination have contributed to risin disease?

Waning immunity, loss of boosting

- Lower effectiveness of new vaccines
- Changes in bacterial population

Reported NNDSS pertussis cases: 1922-2013*

*2013 data are provisional.

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System and 1922-1949, passive reports to the Public Health Service

Australia as a case study – in context

Fig. 1 [colour online]. Boxplot of annual rates of change of pertussis incidence between 1990 and 2010 for countries that met our inclusion criteria: mean DTP3 vaccine uptake of >80 % between 1990 and 2010; populations of >5 million individuals; and >80 % complete case count records for this time period. The pink area indicates countries with significantly positive trends in incidence based on Kendall's tau rank correlation (P < 0.05), white indicates countries for which trends were not significant, and blue indicates countries with significantly decreasing trends. Note that rates of change are plotted on a log scale. Representative time-series of countries with increasing (Australia), stationary (Argentina), and decreasing (Spain) trends are shown on the right.

Jackson & Rohani, Epidemiol Infect 2014

Use of pertussis vaccines in Australia

Campbell et al PLoS ONE 2012

Pertussis resurgence in Australia

2012 7

Australian pertussis seroepidemiology

Collected during and shortly after epidemic

Collected in trough before large epidemic

Campbell et al PLoS ONE 2012

Modelling Australian pertussis trends

"All I'm saying is we plug these into Excel, let it do its thing, and then we can all play until lunch!"

Vaccine/natural immunity interaction

Pertussis model attributes

- Compartmental susceptible, infected, recovered
- Age-structured relates to disease risk, vaccine timing
- Dynamic prevalence drives incidence in susceptibles
- Model of *infection*, as opposed to symptoms or disease
- Model states are associated with pertussis AB levels: used as a marker of infection, vaccination

Model simulation and selection

- Model parameters varied simultaneously
 - Plausible parameter distributions based on local data, literature review
 - 200,000 parameter combinations tested
 - Qualitative match to 3 criteria and large epidemic post removing toddler dose

Selected simulations (n=2,321)

*Naïve and low immune infections

Understanding the past

- Natural immunity duration is far longer than either vaccine
- Coverage fluctuations open up opportunity for outbreaks
- Cycles of immunity and waning post outbreak have implications decades later
- Schedule change has opened up susceptible 'pockets' to fuel the most recent epidemic

Campbell et al Vaccine 2015

Looking backwards and forwards

Australian Immunisation Schedule

Impact of schedule changes

	median incidence difference			
	per year per 100,000			
	(99% CI)			
	Historical 2003-2013	Future 2014-2020		
age	With 18mth dose/ Without 15yr dose	Addition of 18mth dose	Replacement of 15yr dose with 18mth dose	Delay third dose to 12mth
< 8 wks	62 (28, 86)	-253 (-278, -223)	145 (115, 164)	-6 (-8, -5)
8 wks to < 1yr	9 (5,13)	-37 (-43, -33)	17 (14, 20)	30 (26, 35)
18mth to <4yr	-282 (-313, -247)	-337 (-366, -311)	-276 (-303, -247)	-15 (-17, -13)
15yr to <30yr	98 (91, 103)	-21 (-23, -19)	160 (154, 168)	-0.7 (-0.7, -0.6)

*Best strategy: 43% reduction toddlers, 8% reduction infants

Conclusions

- Multiple factors have contributed to pertussis resurgence in Australia and elsewhere
- Ongoing transmission of pertussis seems inevitable
- A six-dose vaccine schedule (reintroducing the toddler booster) is expected to have some impact on transmission, and hence disease
- Additional mitigation strategies are needed to protect infants at highest risk of severe outcomes

Context and next steps

- Other groups have used models to consider the drivers of pertussis resurgence in their own context
 - □ Yoon Choi, Public Health England, UK
 - Manoj Gambhir, Centers for Disease Control, US
- WHO-supported model comparison exercise underway to assess model applicability to other data and settings
- Development of models of maternal immunisation approaches in household structured populations

Acknowledgements

- University of Melbourne
- Trish Campbell
- James McCaw
- Terry Nolan
- John Mathews
- UNSW
- James Wood

- NCIRS
- Peter McIntyre
- Helen Quinn
- Rob Menzies
- Lyn Gilbert

Any questions?

"I think you should be more explicit here in step two."