

Vaccines based on genetically detoxified PT-9K/129G

Mariagrazia Pizza

Pertussis: biology, epidemiology and prevention

Annecy, Nov 13th, 2015

3D organization of PT structure

Catalytic residues in wild type (Arg 9 and Glu 129) and mutated S1 (Lys 9 and Gly 129)

Predicted effects of detoxification on PT structure

- No reversion to toxicity
- B and T cell epitopes conserved
- Higher immunogenicity

Arg and Lys residues, blue and red respectively

Recognition of genetically or chemically detox. PT by neutralizing MAbs

Titers are expressed as anti-detoxified PT ELISA to anti-native PT ELISA ratio. PTd = PT detoxified by 0.35% formaldehyde treatment; PTg = PT genetically detoxified (PT-9K/129G). *Ibsen, P. H. (1996). Vaccine.*

PT neutralization assay confirms the superiority of genetically detoxified PT

PT neutralization assay

- Active PT induces a <u>clustered phenotype</u> in CHO cells
- aP antibodies are able to inhibit the clustering
- <u>Titers</u>: reciprocal of the highest dilution able to inhibit cell clustering

PT9K/129G induces higher protection in the animal models

PT immunogenicity in humans: NIH trial

PT immunogenicity NIH trial: dose response

Increasing PTg dose will lead to a superior vaccine

N° of subjects enrolled = 14751; Multicenter trial: 62 centers - in 4 regions; Schedule: 2-4-6-months.

Component	SmithKline DTaP	Biocine DTaP	Connaught (US) DTwP	Biocine DT (Control)	
PT : Inactive Pertussis Toxin (μg)	25	<u>5</u> (genetically)	Pertussis*		
FHA : Filamentous hemagglutin (μg)	25	<u>2.5</u>	Pertussis*		
PRN : Pertactin (µg)	8	<u>2.5</u>	Pertussis*		
D : Diphtheria Toxoid (flocculation units)	25	<u>25</u>	6.65	25	
T : Tetanus Toxoid (flocculation units)	10	<u>10</u>	5	10	
Aluminum-Salt Adjuvant	Aluminum Hydroxide	Aluminum Hydroxide	Aluminum Phosphate	Aluminum Hydroxide	
Weight of ionic AI (mg)	0.5	0.35	0.35 0.15		
Preservative	2-Phenoxyethanol	Thimerosal	Thimerosal	Thimerosal	
Weight (mg)	2.5	0.05	0.05	0.05	

*5.7 IU per dose by mouse intracerebral challenge test, as determined by manufacturer

Greco D et al. NEJM 1996)

1990s Italian Efficacy Study: Immunogenicity

ASSAY	SmithKline DTap		Biocine DTaP		Connaught (US) DTwP		Biocine DT (control)	
	GMT (95% CI)	RESPONSE (%)	GMT (95%CI)	RESPONSE (%)	GMT (95%Cl)	RESPONSE (%)	GMT (95%CI)	RESPONSE (%)
EIA for IgG to PT (units/ml)	51.3	94.5	94.4	96.7	1.2	4.2	1.0	
EIA for IgG to FHA (units/ml)	147.0	85.1	52.6	60.5	5.2	13.1	1.5	
EIA for IgG to PRN (units/ml)	274.2	96.6	136.6	95.9	9.9	37.9	1.6	
PT neutralization by CHO	230.0	67.8	787.6	93.6	23.0	1.7	22.0	
D		96.6		98.8		92.9		98.8
т		99.8		100		99.1		100

Greco DNEJM 1996.

EIA= enzyme linked immunoassay, CI= confidence interval, GMT= geometric mean titer, CHO= chinese hamster ovary assay

VACCINE	EFFICACY
Biocine DTaP	84.2 (76.2 – 89.7)
SmithKline DTap	83.9 (75.8 – 89.4)
Connaught (US) DTwP	36.1 (14.2-52.1)

1990s Italian Efficacy Study: key findings

PT9K/129G (at a dose of 1/5 of the chemically detox PT) was able to induce

- earlier protection from disease, before completion of the full vaccination schedule
- longer protection, in the later phase, when the titers of circulating antibody are declining

The need of Pertussis Booster Vaccines

- Significant resurgence of notified pertussis in the past decade <u>despite global vaccination with</u> <u>high uptake</u>
- Highest burden in infants under 6 months and persons over 10 years

(Source: http://www.cdc.gov/pertussis/downloads/pertussis-surveillance-report.pdf)

A Phase I, Randomized, Controlled,

Observer-Blind,

Dose-Ranging Study of Acellular Pertussis and

Tetanus-Diphtheria-Acellular Pertussis Booster

Vaccines in Adults Aged 18 to 40 Years

V113_01: Study design

V113_01 Day 30 – Immunogenicity results

✓ Non-inferiority ✓ Higher titers with less Ag

PT dosage

	Antigen Doses				
Vaccine Group	PT	FH A (µg)	PR N	D	T Lf)
aP1	1	1	2	0	0
aP2	2	2	4	0	0
aP4	4	4	8	0	0
T5D2aP1	1	1	2	2	5
T5D2aP2	2	2	4	2	5
T5D2aP4	4	4	8	2	5
T5D4aP1	1	1	2	4	5
T5D4aP2	2	2	4	4	5
T5D4aP4	4	4	8	4	5
License d vaccine	8	8	2.5	2.5	5

V113_01 Day 365 – Immunogenicity results

Key Learnings day 365

 PT: Novartis aP/Tdap groups showed more sustained antibody persistency as compared to a licensed booster vaccine. All 4 mcg PT 9K/129G dosages were statistically superior compared to

PT chemically detoxified.

V113_01 Day 365 – aP kinetics over time

- All investigational vaccines were well tolerated with no safety concerns identified.
- 30 days post-vaccination PT9K/129G formulations induced anti PT antibodies at higher level compared to the PT chem. detox., despite lower antigen doses.
- Antibody persistence (180/365 days) was evident in all groups, but waning of anti-PT antibodies was slower in PT9K/129G, as compared to the PT chem.detox. vaccinated subjects

Conclusions

- Only genetic inactivation of pertussis toxin leads to a vaccine antigen that maintains all neutralizing epitopes
- Vaccines containing PT9K/129G outperformed vaccines containing chemically inactivated PT in pre-clinical infection models and in clinical trials even at lower antigen concentrations
- Future pertussis vaccine formulations should include the genetically inactivated PT-9K/129G instead of its chemically activated counterparts

Research Team

Ugo D'Oro

Derek O'Hagan

Bruno Galletti

Sarah Nosari

Barbara Baudner

Rosanna Leuzzi

Anja Seubert

Rino Rappuoli

Development team

Mario Contorni

Maria Lattanzi

Elena Fragapane

Claudia Dovali

Human monoclonals

University of Vanderblit

Gopal Sapparapu, PhD

Nurgun Kose

James Crowe, MD