Vaccines based on genetically detoxified PT-9K/129G

Mariagrazia Pizza

Pertussis: biology, epidemiology and prevention

Annecy, Nov 13th, 2015
3D organization of PT structure
Catalytic residues in wild type (Arg 9 and Glu 129) and mutated S1 (Lys 9 and Gly 129)
Predicted effects of detoxification on PT structure

- No reversion to toxicity
- B and T cell epitopes conserved
- Higher immunogenicity

Arg and Lys residues, blue and red respectively
Recognition of genetically or chemically detox. PT by neutralizing MAbs

Titers are expressed as anti-detoxified PT ELISA to anti-native PT ELISA ratio. PTd = PT detoxified by 0.35% formaldehyde treatment; PTg = PT genetically detoxified (PT-9K/129G). Ibsen, P. H. (1996). Vaccine.
PT neutralization assay confirms the superiority of genetically detoxified PT

PT neutralization assay
- Active PT induces a *clustered phenotype* in CHO cells
- aP antibodies are able to inhibit the clustering
- Titers: reciprocal of the highest dilution able to inhibit cell clustering

Genetically detoxified PT elicits antibodies with higher neutralizing activity (mouse)
PT9K/129G induces higher protection in the animal models

aP-mediated protection depends on degree of formylation of the vaccine antigens

protection from colonization correlates with vaccine efficacy; protection mediated by Th1/Th17-dependent mechanisms
PT immunogenicity in humans: NIH trial

PT ELISA units/μg protein

Genetically
Chemically
Detoxified PT
PT immunogenicity NIH trial: dose response

Increasing PTg dose will lead to a superior vaccine
1990s Italian Efficacy Study: Design

N° of subjects enrolled = 14751; Multicenter trial: 62 centers - in 4 regions; Schedule: 2-4-6-months.

<table>
<thead>
<tr>
<th>Component</th>
<th>SmithKline DTaP</th>
<th>Biocine DTaP</th>
<th>Connaught (US) DTwP</th>
<th>Biocine DT (Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Inactive Pertussis Toxin (µg)</td>
<td>25</td>
<td>5 (genetically)</td>
<td>Pertussis*</td>
<td>--</td>
</tr>
<tr>
<td>FHA: Filamentous hemagglutinin (µg)</td>
<td>25</td>
<td>2.5</td>
<td>Pertussis*</td>
<td>--</td>
</tr>
<tr>
<td>PRN: Pertactin (µg)</td>
<td>8</td>
<td>2.5</td>
<td>Pertussis*</td>
<td>--</td>
</tr>
<tr>
<td>D: Diphtheria Toxoid (flocculation units)</td>
<td>25</td>
<td>25</td>
<td>6.65</td>
<td>25</td>
</tr>
<tr>
<td>T: Tetanus Toxoid (flocculation units)</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Aluminum-Salt Adjuvant</td>
<td>Aluminum Hydroxide</td>
<td>Aluminum Hydroxide</td>
<td>Aluminum Phosphate</td>
<td>Aluminum Hydroxide</td>
</tr>
<tr>
<td>Weight of ionic Al (mg)</td>
<td>0.5</td>
<td>0.35</td>
<td>0.15</td>
<td>0.7</td>
</tr>
<tr>
<td>Preservative</td>
<td>2-Phenoxyethanol</td>
<td>Thimerosal</td>
<td>Thimerosal</td>
<td>Thimerosal</td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>2.5</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*5.7 IU per dose by mouse intracerebral challenge test, as determined by manufacturer

Greco D et al. NEJM 1996)
1990s Italian Efficacy Study: Immunogenicity

<table>
<thead>
<tr>
<th>ASSAY</th>
<th>SmithKline DTap</th>
<th>Biocine DTaP</th>
<th>Connaught (US) DTwP</th>
<th>Biocine DT (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMT (95% CI)</td>
<td>RESPONSE (%)</td>
<td>GMT (95% CI)</td>
<td>RESPONSE (%)</td>
</tr>
<tr>
<td>EIA for IgG to PT (units/ml)</td>
<td>51.3</td>
<td>94.5</td>
<td>94.4</td>
<td>96.7</td>
</tr>
<tr>
<td>EIA for IgG to FHA (units/ml)</td>
<td>147.0</td>
<td>85.1</td>
<td>52.6</td>
<td>60.5</td>
</tr>
<tr>
<td>EIA for IgG to PRN (units/ml)</td>
<td>274.2</td>
<td>96.6</td>
<td>136.6</td>
<td>95.9</td>
</tr>
<tr>
<td>PT neutralization by CHO</td>
<td>230.0</td>
<td>67.8</td>
<td>787.6</td>
<td>93.6</td>
</tr>
<tr>
<td>D</td>
<td>96.6</td>
<td>98.8</td>
<td>92.9</td>
<td>98.8</td>
</tr>
<tr>
<td>T</td>
<td>99.8</td>
<td>100</td>
<td>99.1</td>
<td>100</td>
</tr>
</tbody>
</table>

Greco DNEJM 1996.

EIA= enzyme linked immunoassay, CI= confidence interval, GMT= geometric mean titer, CHO= chinese hamster ovary assay
1990s Italian Efficacy Study: Efficacy

<table>
<thead>
<tr>
<th>VACCINE</th>
<th>EFFICACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocine DTaP</td>
<td>84.2 (76.2 – 89.7)</td>
</tr>
<tr>
<td>SmithKline DTap</td>
<td>83.9 (75.8 – 89.4)</td>
</tr>
<tr>
<td>Connaught (US) DTwP</td>
<td>36.1 (14.2-52.1)</td>
</tr>
</tbody>
</table>
PT9K/129G (at a dose of 1/5 of the chemically detox PT) was able to induce
• earlier protection from disease, before completion of the full vaccination schedule
• longer protection, in the later phase, when the titers of circulating antibody are declining
The need of Pertussis Booster Vaccines

- Significant resurgence of notified pertussis in the past decade despite global vaccination with high uptake
- Highest burden in infants under 6 months and persons over 10 years

(Source: http://www.cdc.gov/pertussis/downloads/pertussis-surveillance-report.pdf)

Reported pertussis incidence by age group: 1990-2012*

- Neonates: most vulnerable
- Infants: increasing incidence

* Maternal Booster

neonates

* Infant Booster
A Phase I, Randomized, Controlled, Observer-Blind, Dose-Ranging Study of Acellular Pertussis and Tetanus-Diphtheria-Acellular Pertussis Booster Vaccines in Adults Aged 18 to 40 Years
V113_01: Study design

Visit	**Day 1**	**Day 30**
Vaccine Group
<table>
<thead>
<tr>
<th>No of Subjects</th>
<th>Antigen Doses</th>
<th>Td-pur®</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>FHA</td>
<td>PRN</td>
</tr>
</tbody>
</table>
1 (NVD aP booster) | 42 | 1 | 1 | 2 | 0 | 0 | Td-pur® |
2 (NVD aP booster) | 42 | 2 | 2 | 4 | 0 | 0 | Td-pur® |
3 (NVD aP booster) | 42 | 4 | 4 | 8 | 0 | 0 | Td-pur® |
4 (NVD Tdap booster) | 42 | 1 | 1 | 2 | 2 | 5 | Saline |
5 (NVD Tdap booster) | 42 | 2 | 2 | 4 | 2 | 5 | Saline |
6 (NVD Tdap booster) | 42 | 4 | 4 | 8 | 2 | 5 | Saline |
7 (NVD Tdap booster) | 42 | 1 | 1 | 2 | 4 | 5 | Saline |
8 (NVD Tdap booster) | 42 | 2 | 2 | 4 | 4 | 5 | Saline |
9 (NVD Tdap booster) | 42 | 4 | 4 | 8 | 4 | 5 | Saline |
10 (Licensed comparator Tdap booster) | 42 | 8 | 8 | 2.5 | 2.5 | 5 | Saline |

Blood draw
- Day 1
- Day 8
- Day 30
- Day 180
- Day 365
Non-inferiority

Higher titers with less Ag
Key Learnings day 365

- PT: Novartis aP/Tdap groups showed more sustained antibody persistency as compared to a licensed booster vaccine. All 4 mcg PT 9K/129G dosages were statistically superior compared to PT chemically detoxified.
Day 365 – aP kinetics over time

PT GMR kinetic aP vs. Licensed Vaccine

GMR

Days

aP 1-1-2 aP 2-2-4 aP 4-4-8 Boostrix
V113 Phase I study: Conclusions

– All investigational vaccines were well tolerated with no safety concerns identified.

– 30 days post-vaccination PT9K/129G formulations induced anti PT antibodies at higher level compared to the PT chem. detox., despite lower antigen doses.

– Antibody persistence (180/365 days) was evident in all groups, but waning of anti-PT antibodies was slower in PT9K/129G, as compared to the PT chem. detox. vaccinated subjects.
Conclusions

– Only genetic inactivation of pertussis toxin leads to a vaccine antigen that maintains all neutralizing epitopes
– Vaccines containing PT9K/129G outperformed vaccines containing chemically inactivated PT in pre-clinical infection models and in clinical trials even at lower antigen concentrations
– Future pertussis vaccine formulations should include the genetically inactivated PT-9K/129G instead of its chemically activated counterparts
The Pertussis Team

Research Team
Ugo D’Oro
Derek O’Hagan
Bruno Galletti
Sarah Nosari
Barbara Baudner
Rosanna Leuzzi
Anja Seubert
Rino Rappuoli

Development team
Mario Contorni
Maria Lattanzi
Elena Fragapane
Claudia Dovali

Human monoclonals
University of Vanderblit
Gopal Sapparapu, PhD
Nurgun Kose
James Crowe, MD