Pertussis Epidemiology and Vaccine Impact in the United States

Stacey Martin, MSc
Epidemiology Team Lead
Meningitis and Vaccine Preventable Diseases Branch
Centers for Disease Control and Prevention

Presented at Fondation Mérieux Conference - Pertussis: biology, epidemiology and prevention
11-13 November 2015
Reported NNDSS pertussis cases: 1922-2014

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System and 1922-1949, passive reports to the Public Health Service
DTaP Coverage Among Children and Tdap Coverage Among Adolescents and Adults

CDC National Immunization Survey: DTaP among children aged 19 through 35 months, Tdap coverage among adolescents aged 13 through 17 years. Coverage among adults aged 19 through 64 years from National Health Information Survey.
Reported pertussis incidence by age group: 1990-2014

Incidence rate (per 100,000)

Year

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System
Pertussis cases by age — United States, 2004
n=25,827

Vaccine Type Received*

- Acellular Only
- Whole Cell and Acellular
- Transition Period

Cases

Age (years)
Pertussis cases by age — United States, 2010
n=27,550

Cases

Age (years)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Vaccine Type Received*

Acellular Only

Whole Cell and Acellular

Transition Period
DTaP VE and Duration of Protection Estimates—California, 2010

<table>
<thead>
<tr>
<th>Model *</th>
<th>Case (n)</th>
<th>Control (n)</th>
<th>VE, %</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall VE, All Ages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dose</td>
<td>53</td>
<td>19</td>
<td>Ref</td>
<td>--</td>
</tr>
<tr>
<td>5 doses</td>
<td>629</td>
<td>1,997</td>
<td>88.7</td>
<td>79.4 – 93.8</td>
</tr>
<tr>
<td>Time since 5th dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 doses</td>
<td>53</td>
<td>19</td>
<td>Ref</td>
<td>--</td>
</tr>
<tr>
<td>< 12 months</td>
<td>19</td>
<td>354</td>
<td>98.1</td>
<td>96.1 – 99.1</td>
</tr>
<tr>
<td>12 – 23 months</td>
<td>51</td>
<td>391</td>
<td>95.3</td>
<td>91.2 – 97.5</td>
</tr>
<tr>
<td>24 – 35 months</td>
<td>79</td>
<td>366</td>
<td>92.3</td>
<td>86.6 – 95.5</td>
</tr>
<tr>
<td>36 – 47 months</td>
<td>108</td>
<td>304</td>
<td>87.3</td>
<td>76.2 – 93.2</td>
</tr>
<tr>
<td>48 – 59 months</td>
<td>141</td>
<td>294</td>
<td>82.8</td>
<td>68.7 – 90.6</td>
</tr>
<tr>
<td>60+ months</td>
<td>231</td>
<td>288</td>
<td>71.2</td>
<td>45.8 – 84.8</td>
</tr>
</tbody>
</table>

Accounting for clustering by county and provider
Pertussis cases by age — United States, 2012
n=48,277

Vaccine Type Received:
- Whole Cell and Acellular
- Acellular Only
- Transition Period

Cases

Age (years)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tdap duration of protection among populations born during 1998-2000, that only received acellular vaccines, Washington and Wisconsin, 2012

<table>
<thead>
<tr>
<th>Time since Tdap</th>
<th>VE, % (95% CI)</th>
<th>Year of Tdap Receipt</th>
<th>VE, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Tdap</td>
<td>Reference</td>
<td>No Tdap</td>
<td>Reference</td>
</tr>
<tr>
<td>< 1 year</td>
<td>73.1 (60.3-81.8)</td>
<td>2012</td>
<td>75.3 (55.2-86.5)</td>
</tr>
<tr>
<td>1 - < 2 years</td>
<td>54.9 (32.4-70.0)</td>
<td>2011</td>
<td>68.2 (60.9-74.1)</td>
</tr>
<tr>
<td>2 - < 4 years</td>
<td>34.2 (-0.03-58.0)</td>
<td>2010</td>
<td>34.5 (19.9-46.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009/2008</td>
<td>11.9 (-11.1-30.1)</td>
</tr>
</tbody>
</table>

U.S. Pertussis Cases by Age — 2014

n = 32,971

Source: CDC National Notifiable Disease Surveillance System, 2014
Antigenic and Biologically Active Components

- pertussis toxin (PT)
- filamentous hemagglutinin (FHA)
- pertactin
- fimbriae
- agglutinogens
- adenylate cyclase
- tracheal cytotoxin
Proportion of *B. pertussis* Isolates from the United States Lacking Prn

Martin SW et al. Clin Infect Dis. 2015; 60:223-7
Mutations Causing Lack of Prn

Deletions, multiple sizes
Promoter disruption

prn gene deletion
Clinical and Epidemiological Significance of Pertactin-Deficient *B. pertussis*

- Epi-Analysis of 753 isolates and corresponding case data
 - Isolates from 2012
 - 6 Enhanced Pertussis Surveillance (EPS) sites plus epidemics in WA and VT
 - Pertactin-deficiency (PRN-) fully assessed
 - 85% were PRN-
 - All states had a high proportion of PRN- isolates
 - Proportion of patients reporting pertussis symptoms similar by pertactin status
 - Except more without the deficiency reported apnea (p-value=0.005)
 - Vaccinated patients had a higher odds of having PRN- *B. pertussis* as compared to unvaccinated (OR=3.2; 95% CI= 1.9-5.3)
 - When vaccinated patients were restricted to those up-to-date with vaccinations the OR increased to 3.7 (95% CI=1.9-7.0).
Summary: Pertactin-Deficient *B. pertussis*

- The ~3-fold greater odds of having PRN- *B. pertussis* when up-to-date with vaccinations compared to unvaccinated
 - First evidence for a possible selective advantage of PRN- strains

- The large number of mutations (>16)
 - Vaccine pressure may have played a significant role in the emergence of PRN- strains

- Next step: vaccine effectiveness in pertactin-deficient strains
 - Case-control evaluation in Vermont
Impact of Pertactin-deficiency on Vaccine Effectiveness: Vermont VE Evaluation

- Vermont reported 645 cases in 2012
 - (103/100,000 population)
- Centralized testing at the VT SPHL
 - All PCR+ specimens are cultured
 - 94% of tested isolate are Prn-deficient

Objective:
- Estimate VE and duration of protection
 - 5-dose DTaP series among 4-10 year olds
 - Tdap dose among 11-19 year olds

*slide provided by Anna Acosta, MD (MVPDB/CDC)
DTaP Duration of Protection

Do not distribute – pending publication

<table>
<thead>
<tr>
<th>Vaccine Status</th>
<th>Case (n)</th>
<th>Control (n)</th>
<th>VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DTaP doses</td>
<td>19</td>
<td>11</td>
<td>84 (58-94)</td>
</tr>
<tr>
<td>5 on-schedule DTaP doses</td>
<td>244</td>
<td>715</td>
<td></td>
</tr>
</tbody>
</table>

Duration of Protection

<table>
<thead>
<tr>
<th>Time since 5th DTaP (years)</th>
<th>Case (n)</th>
<th>Control (n)</th>
<th>VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DTaP doses</td>
<td>19</td>
<td>11</td>
<td>Ref</td>
</tr>
<tr>
<td><1</td>
<td>19</td>
<td>95</td>
<td>90 (71-97)</td>
</tr>
<tr>
<td>1 – 2</td>
<td>21</td>
<td>144</td>
<td>93 (79-98)</td>
</tr>
<tr>
<td>2 – 3</td>
<td>28</td>
<td>119</td>
<td>89 (69-96)</td>
</tr>
<tr>
<td>3 – 4</td>
<td>33</td>
<td>120</td>
<td>87 (63-95)</td>
</tr>
<tr>
<td>4 – 5</td>
<td>60</td>
<td>113</td>
<td>76 (33-91)</td>
</tr>
<tr>
<td>5 – 7</td>
<td>83</td>
<td>124</td>
<td>68 (10-88)</td>
</tr>
</tbody>
</table>

slide provided by Anna Acosta, MD (MVPDB/CDC)
Tdap Duration of Protection

Do not distribute – pending publication

<table>
<thead>
<tr>
<th>Vaccine status</th>
<th>Case</th>
<th>Control</th>
<th>VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Tdap dose</td>
<td>103</td>
<td>163</td>
<td>70 (54-81)</td>
</tr>
<tr>
<td>1 on-schedule Tdap</td>
<td>141</td>
<td>551</td>
<td></td>
</tr>
</tbody>
</table>

Duration of Protection

<table>
<thead>
<tr>
<th>Time since Tdap (years)</th>
<th>Case</th>
<th>Control</th>
<th>VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Tdap dose</td>
<td>103</td>
<td>163</td>
<td>Ref</td>
</tr>
<tr>
<td><1</td>
<td>35</td>
<td>202</td>
<td>76 (60-85)</td>
</tr>
<tr>
<td>1 – 2</td>
<td>51</td>
<td>180</td>
<td>63 (37-78)</td>
</tr>
<tr>
<td>2 – 4</td>
<td>55</td>
<td>169</td>
<td>56 (16-77)</td>
</tr>
</tbody>
</table>

slide provided by Anna Acosta, MD (MVPDB/CDC)
Vaccine Effectiveness among Pertactin-Deficient Strains – Tdap

Do not distribute – pending publication

<table>
<thead>
<tr>
<th>Tdap</th>
<th>No. of doses</th>
<th>Case</th>
<th>Control</th>
<th>VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0</td>
<td>103</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>141</td>
<td>551</td>
<td>70 (54-81)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>244</td>
<td>714</td>
<td></td>
</tr>
</tbody>
</table>

| Pertactin-deficient strains only | 0 | 33 | 62 | |
| Total | 1 | 71 | 246| 51 (5-75) |

| Total | 104 | 308 |

slide provided by Anna Acosta, MD (MVPDB/CDC)
CDC’S ADVANCED MOLECULAR DETECTION INITIATIVE
B. pertussis Genome Sequencing

<table>
<thead>
<tr>
<th>Year</th>
<th>Selected</th>
<th>Sequenced</th>
<th>CLOSED Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic Diversity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 – 2013</td>
<td>175</td>
<td>101</td>
<td>81</td>
</tr>
<tr>
<td>Enhanced Pertussis Surveillance</td>
<td>117</td>
<td>92</td>
<td>82</td>
</tr>
<tr>
<td>California Epidemic</td>
<td>2010</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Vermont Epidemic</td>
<td>2012</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Prospective, Non-EPS</td>
<td>2014</td>
<td>88</td>
<td>48</td>
</tr>
<tr>
<td>Other*</td>
<td>20</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>433</td>
<td>288</td>
<td>215</td>
</tr>
</tbody>
</table>

* Other
Vaccine strains (Tohama I, CS, Sanofi-Pastuer)
Pertussis toxin-negative (2)
Filamentous hemagglutinin-negative (2)

All assemblies yield closed genomes that will be publically-available via NCBI.

*slide provided by Michael Weigand, PhD (MVPDB/CDC)
B. pertussis Comparative Genomics, mid-2014

- Limited ability to detect variation with short-read technologies, challenged by:
 - High G+C content
 - Repeat regions
 - High copy number of insertion sequence elements (IS481)
- Genomics based on reference sequence of Tohama I through resequencing efforts

Sequence (SNPs)

- Very few nucleotide differences in most genes

IS481

- Occasional gene disruption (e.g. prn)

RESULT: Global population appeared **CLONAL and MONOMORPHIC**

(despite unexplained variation in PFGE)

slide provided by Michael Weigand, PhD (MVPDB/CDC)
Reference-free, comprehensive detection of all variation:

- **Sequence**
 - SNPs, insertions/deletions

- **Structural/Organization**
 - IS-element stability
 - Genome architecture

Rearrangements

Genome structure varies between *B. pertussis* strains:

Only resolvable with CLOSED (complete) assemblies

*slide provided by Michael Weigand, PhD (MVPDB/CDC)
Genome Structural Diversity Within an Epidemic

Example: CA 2010

*slide provided by Michael Weigand, PhD (MVPDB/CDC)
VACCINATION STRATEGIES TO PROTECT INFANTS
Changing pertussis epidemiology – shift in source of transmission to infants

- Previously, parents commonly identified as source
 - Mothers most often

- More recently, siblings identified as most common source
 - Having a sibling was a risk factor for infant pertussis
 - Source of infection study
 - 2006-2013 a source of infection for 44% of identified infant pertussis cases
 - 85% of identified sources were classified as family members
 - Siblings most commonly identified (35.5%)

Tdap coverage among pregnant women from various sources, United States

- **Vaccine Safety Datalink sites**
 - 13.7% (2012)

- **Michigan Medicaid**
 - 14.3% (2011-2013)

- **2014-2015 Internet Panel Survey of pregnant women, during flu season**
 - 23.5% (2014-2015 flu season)

CDC. Internet Panel Survey. Women aged 18–49 years pregnant at any time since August of prior year (e.g. 2014 for the April 2015 survey) were recruited in a general population internet panel operated by Survey Sampling International.
Effectiveness of Maternal Tdap Vaccination Strategies at Preventing Infant Pertussis

- **Objective:** Measure effectiveness of vaccination during pregnancy at preventing pertussis among infants <6 months of age (<2 months, 2-<6 months groups)
- **CA, CT, MN, NM, NY, OR**
- **Case-control evaluation; 1:3**
 - Cases: Confirmed and probable pertussis cases, also PCR+ cases with cough of any duration; cough onset 1/1/11 – 12/31/14
 - Controls: birth certificates; selected by age group & birth hospital
- **Provider-verified vaccination status:**
 - Case/control infants and mothers

*slide provided by Tami Skoff, MS (MVPDB/CDC)
Effectiveness of Maternal Tdap Vaccination Strategies at Preventing Infant Pertussis

- Exclude cases and controls <2 weeks
 - Disproportionate number of controls <2 weeks

- Multivariate models control for:
 - Infant age in weeks
 - More than 2 family members in the household
 - Hispanic ethnicity
 - Income less than $75,000/year
 - Mother did not attend any college
 - Infant was breastfed at any time (for any length of time)
 - Someone in the home diagnosed with pertussis

*slide provided by Tami Skoff, MS (MVPDB/CDC)
PRELIMINARY VE of Tdap During Pregnancy at Preventing Pertussis in Infants <2 Months
PRELIMINARY VE of Tdap During Pregnancy at Preventing Pertussis in Infants <2 Months, Stratified by Trimester

*slide provided by Tami Skoff, MS (MVPDB/CDC)
Possible Contributing Factors

- Surveillance bias
 - *However*, changes in risk by age strongly suggest a cohort effect

- Vaccine refusal or under-vaccination
 - *However*, coverage is excellent and majority of cases are vaccinated and outbreaks are widespread

- Waning of immunity after vaccination
 - Studies provide strong evidence of waning of protection

- Type of immune response
 - Animal models suggest aP vaccines may not prevent infection and transmission

- Molecular changes in the population of *B. pertussis*
 - Yes, *but* impact on disease and transmission is still uncertain
Thank You

www.cdc.gov/pertussis
www.cdc.gov/pregnant

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.