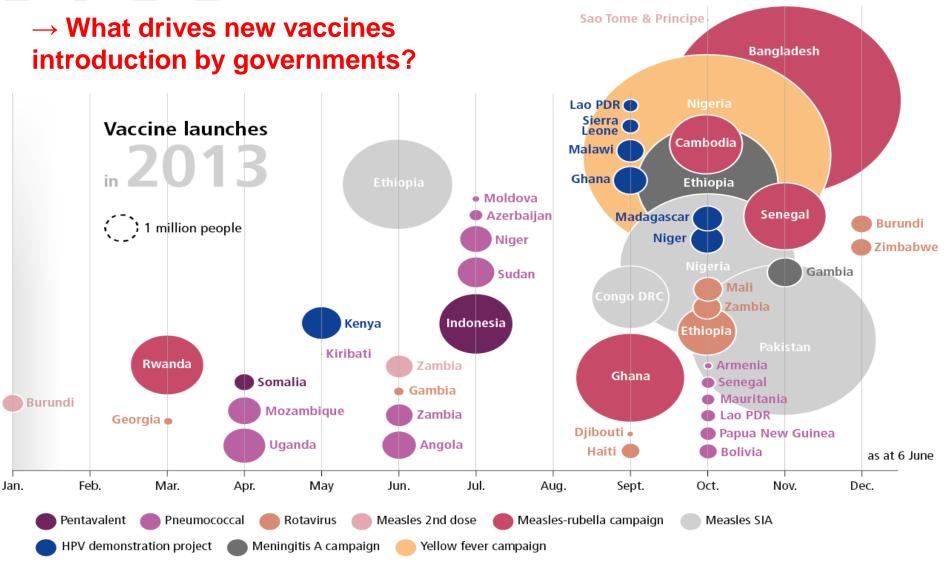
# DENGUE VACCINATION IMPACT: BEYOND EFFICACY

#### Isabelle Delrieu, PhD & Bradford D. Gessner, MD Agence de Médecine Preventive

idelrieu@aamp.org & bguessner@aamp.org


Vaccinology 2016 X International Symposium for Latin American Experts September 20-22, Brasilia, Brazil



# BURDEN CONCEPTS VE AND PH BURDEN MEASURES DENGUE VACCINE BEYOND BURDEN

## Vaccine Launches 2013







Social Science & Medicine 65 (2007) 1751-1764



www.elsevier.com/locate/socscimed

# What influences government adoption of vaccines in developing countries? A policy process analysis

Syarifah Liza Munira<sup>a,\*</sup>, Scott A. Fritzen<sup>b</sup>

"Disease burden has been consistently mentioned by policymakers in countries to be the number one factor in setting priorities for vaccines to be introduced into immunization programs; the higher the burden, the more attractive a potential addition to the immunization regime of the country would be."

# **Burden measure limitations**

- Poor diagnostics: non-bacteremic Hib/Sp, typhoid
- Causal etiology gone at time of presentation: flu/viral ARI pathogens precipitating bacterial ARI
- Pathogen present but not causal: flu
- Lack of testing, poor specimen transport systems: all etiologies
- Limited health care access: all etiologies

# BURDEN CONCEPTS VACCINE EFFICACY AND PUBLIC HEALTH BURDEN MEASURES DENGUE VACCINE BEYOND BURDEN

# **Definition of measures**

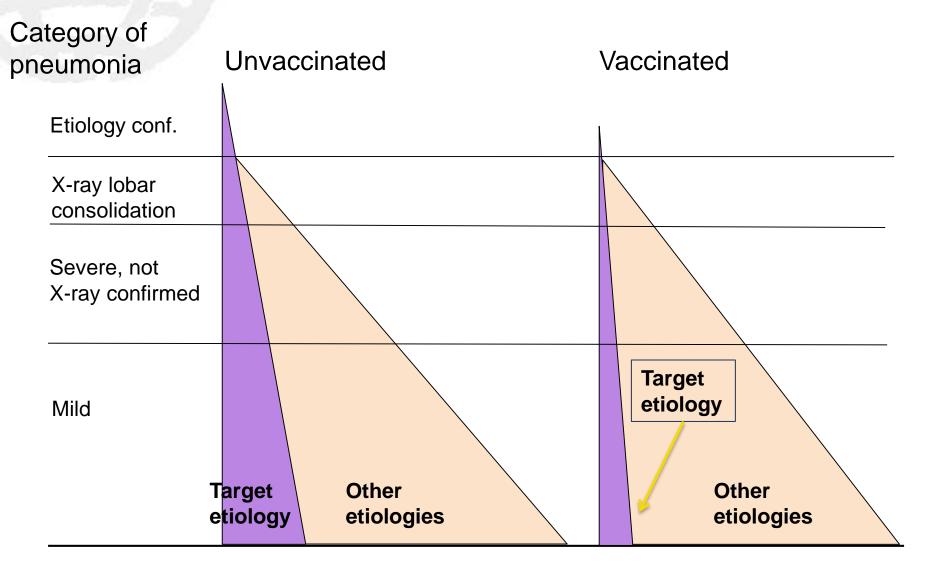
- Vaccine effectiveness/efficacy (VE)
  = 1 (Incidence[vaccinated] ÷ Incidence[unvaccinated])
- Vaccine preventable disease incidence (VPDI)
  - = Incidence[unvaccinated] Incidence[vaccinated]
  - = Incidence[unvaccinated] X VE
- Number needed to vaccinate (NNV)
  = 100,000/VPDI/length of follow-up for VPDI
- Number prevented (nationally) (estimated!)
  = VPDI \* (birth cohort/100,000) \* years of follow-up for VPDI

Feikin, Scott, Gessner. Use of vaccines as probes to define disease burden. Lancet 2014;383:1762-70

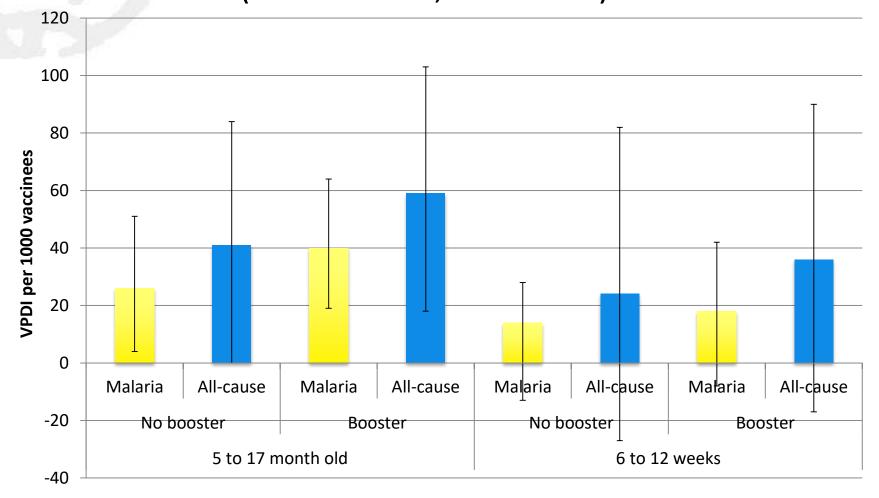
### VPDI, NNV and Cases prevented; VPDI per 100,000 CYO

Lancet 2005;365:1139-46; Lancet 2005;365:43-52; Vaccine 2012;30 (suppl 1):A52-60

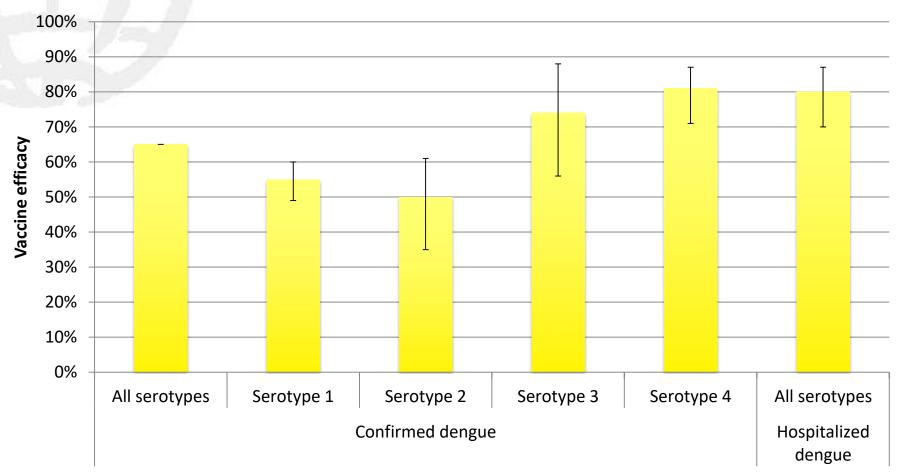
| Syndrome                                      | Etiology confirmed |      |      | Clinical outcome |     |        |     |                |
|-----------------------------------------------|--------------------|------|------|------------------|-----|--------|-----|----------------|
|                                               |                    |      |      |                  |     |        |     |                |
|                                               | VE                 | VPDI | NNV  | Cases<br>prev.   | VE  | VPDI   | NNV | Cases<br>prev. |
| Gambia PCV<br>radiological<br>pneumonia       | 70%                | 140  | 357  | 216              | 37% | 1300   | 38  | 2002           |
| Indonesia, Hib,<br>hospitalized<br>meningitis | 86%                | 16   | 3125 | 1516             | 22% | 160    | 313 | 15,155         |
| Kenya rotavirus,<br>acute<br>gastroenteritis  | 84%                | 3300 | 15   | 101,244          | 34% | 19,000 | 3   | 582,920<br>8   |


# Measures useful outside of developing country settings: acute gastroenteritis (AGE)

| Study                                     | VE  | VPDI   | NNV | Cases prev. |
|-------------------------------------------|-----|--------|-----|-------------|
| Finland (Vaccine 2012;31:176-82)          |     |        |     |             |
| Confirmed inpatient AGE                   | 80% | 390    | 256 | 237         |
| All cause inpatient AGE                   | 54% | 1070   | 93  | 651         |
| Kenya (Vaccine 2012;30 Supp 1:A52-<br>60) |     |        |     |             |
| Confirmed severe                          | 84% | 3300   | 15  | 101,244     |
| Community severe AGE                      | 34% | 19,000 | 3   | 582,920     |


# Public health impact can be greater in settings where vaccine efficacy is lower: acute gastroenteritis (AGE)

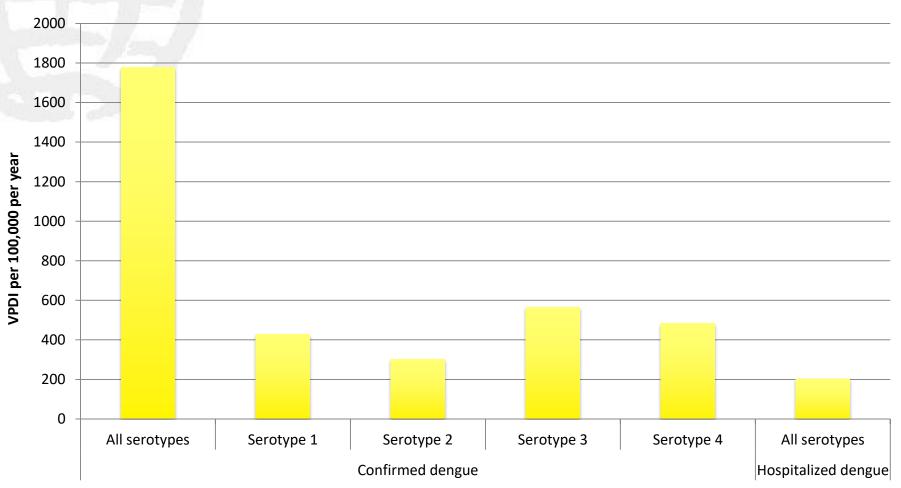
| VE  | VPDI              | NNV                                           | Cases prev.                                                     |
|-----|-------------------|-----------------------------------------------|-----------------------------------------------------------------|
|     |                   |                                               |                                                                 |
| 77% | 4200              | 24                                            | 46,284                                                          |
| 49% | 6700              | 15                                            | 42,813                                                          |
|     |                   |                                               |                                                                 |
| 64% | 2200              | 26                                            | 55,425                                                          |
| 43% | 3500              | 16                                            | 192,950                                                         |
|     | 77%<br>49%<br>64% | 77%    4200      49%    6700      64%    2200 | 77%    4200    24      49%    6700    15      64%    2200    26 |


### Impact of vaccine against categories of pneumonia (Lancet 2014;383:1762-70)



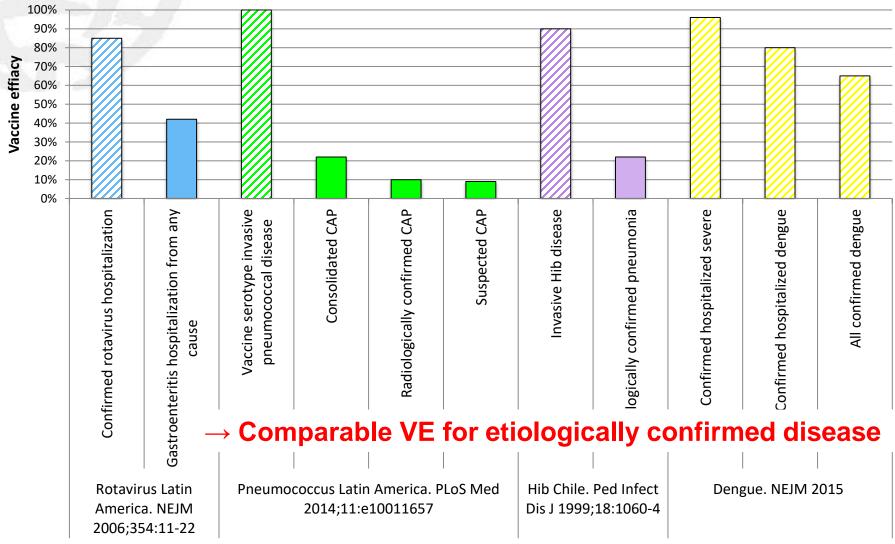
### RTS,S VPDI against malaria-specific and all-cause hospitalization (Lancet 2015;386:31-45).



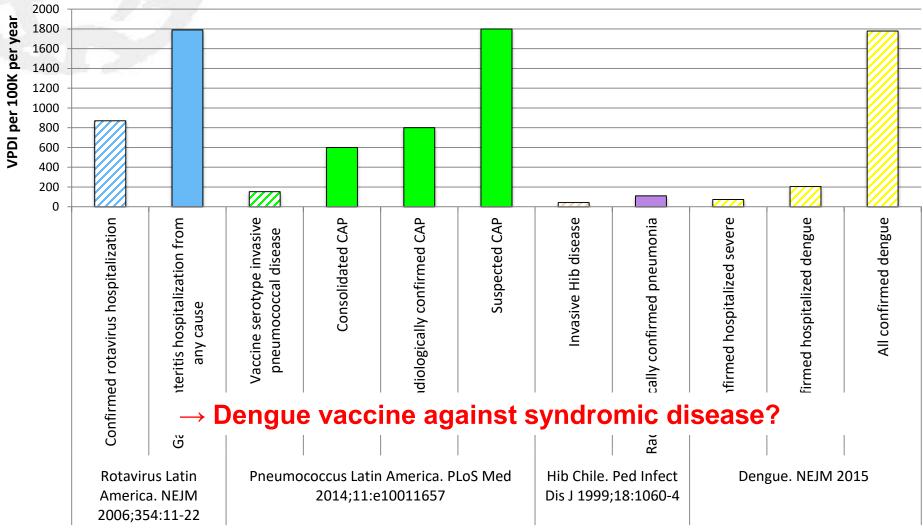

# BURDEN CONCEPTS VACCINE EFFICACY AND PUBLIC HEALTH BURDEN MEASURES DENGUE VACCINE BEYOND BURDEN

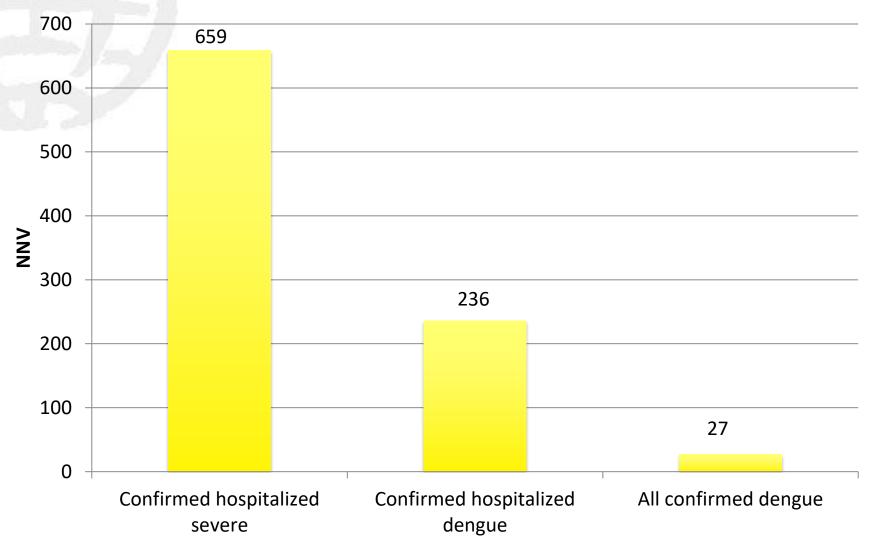


#### Vaccine efficacy against confirmed dengue in children 9-16 years of age in Latin America\*


\*All data based on 2 year VE estimates NEJM 2015;373:1195-206 and NEJM 2015;372:113-23.

# Vaccine preventable disease incidence for confirmed dengue in Latin America\*





\*All data based on 2 year VE estimates NEJM 2015;373:1195-206 and NEJM 2015;372:113-23.

# Vaccine efficacy for dengue compared to other vaccines studied and used in Latin America



### Vaccine preventable disease incidence (VPDI) for dengue compared to other vaccines studied and used in Latin America





#### Number needed to vaccinate (NNV) to prevent cases of dengue

# BURDEN CONCEPTS VACCINE EFFICACY AND PUBLIC HEALTH BURDEN MEASURES DENGUE VACCINE BEYOND BURDEN

# Age distribution

|                              | Sp     | Hib  | Rotavirus | Malaria | Dengue |
|------------------------------|--------|------|-----------|---------|--------|
| <5 year disease              | ++++   | ++++ | ++++      | ++++    | ++/+++ |
| <5 year<br>severity/sequelae | ++++   |      |           | ++++    | +      |
| 5+ year disease              | ++/+++ | +    |           | ++++    | ++++   |
| 5+ year<br>severity/sequelae | +++    | +    |           | +       | +      |

# Sequelae/mortality

|                                                                | Sp/Hib<br>meningitis | Sp/Hib<br>pneumonia | Rotavirus | Malaria | Dengue |
|----------------------------------------------------------------|----------------------|---------------------|-----------|---------|--------|
| Cognitive (MR, dev<br>delay, learning<br>disability, language) | ++++                 |                     |           | +++     |        |
| Sensory (hearing,<br>vision)                                   | ++++                 |                     |           |         |        |
| Physical (CP, seizures)                                        | ++++                 |                     |           | +++     | +      |
| Stunting                                                       | ?                    | ?                   | +         | +++     |        |
| Case fatality ratio                                            | ++++                 | +++                 | +         | ++      | +      |

E.g., in US, big cost driver for Hib was long-term care and institutionalization for meningitis sequelae

# Indirect/replacement/rebound effects

|             | Sp                          | Hib                                        | Rotavirus | Malaria                             | Dengue |
|-------------|-----------------------------|--------------------------------------------|-----------|-------------------------------------|--------|
| Indirect    | +++                         | ++++                                       | ++        |                                     | ?      |
| Replacement | +++                         | +<br>(so far)                              |           |                                     | ?      |
| Rebound     | -/+<br>(without<br>booster) | +<br>(without booster<br>in some settings) |           | +++<br>(depends on<br>transmission) | ?      |

### Work in different directions:

- Indirect effects can greatly increase immunization efficiency and public health value
- Replacement can completely negate immunization efficiency
- 22Rebound shifts disease to older age; generally beneficial

## Immunization program issues

|                                                                  | Sp  | Hib | Rotavirus        | Malaria | Dengue |
|------------------------------------------------------------------|-----|-----|------------------|---------|--------|
| Fits with current<br>childhood schedule                          | +++ | +++ | +++              |         | +      |
| Duration of immunity<br>(with booster)                           | +++ | +++ | Less<br>relevant | -/+     | ??     |
| Variable geographic<br>distribution within<br>affected countries |     |     |                  | ++      | +++    |

# Health system impact

|                                                       | Sp | Hib | Rotavirus | Malaria | Dengue |
|-------------------------------------------------------|----|-----|-----------|---------|--------|
| Outbreak potential                                    | +  |     |           | +       | +++    |
| May overwhelm clinical resources                      | +  |     | ++        | ++      | ++++   |
| Requires other intensive +<br>expensive interventions | +  | +   | ++        | +++     | ++++   |
| Increasing incidence in<br>absence of vaccine         |    |     |           |         | +++    |
| Political dimension                                   | +  | +   | +         | +++     | +++    |

# Equity

|                                             | Sp | Hib | Rotavirus | Malaria | Dengue |
|---------------------------------------------|----|-----|-----------|---------|--------|
| Differences in infection by population      | +  | +   |           | ++      | ++     |
| Differences in severe disease by population | +  | +   | ++        | ++      | +      |
| Differences in mortality by population      | ++ | ++  | +++       | +++     | +++    |

# SUMMARY

- Safety and efficacy just the start of assessing public health value of vaccine
- Burden is the foundation of decision making
  - Incidence
  - VPDI
  - NNV
  - Cases prevented
  - Sequelae
  - Mortality
- Other key issues
  - Vaccine characteristics
  - Programmatic concerns
  - Health system impact
  - Equity
- All of these features contribute to models estimating public health value of vaccine
- Based on clinical trial data, dengue vaccine should have similar public health impact as other vaccines currently used in Latin American public health programs.



## Obrígado Gracías Thank you Mercí

bgessner@aamp.org

#### Vaccine probe studies:

- □ 3 distinct insights into the epidemiology of vaccine-preventable diseases:
- can estimate absolute burden of disease incidence that is preventable by a vaccine. The effect of a vaccine can be measured against different disease manifestations as well as health-system endpoints such as health-care visits or drug use.
- 2. can measure the contribution of a specific pathogen targeted by vaccination to a broad clinical syndrome.
- Vaccines can be used to investigate the causal chain in disease pathogenesis. For example, if an infectious disease is hypothesised to cause a specific form of cancer, a trial of an effective vaccine against the infection could test the hypothesis

epidemiological methods of vaccine probe studies do not differ from those of vaccine efficacy or effectiveness studies: RCT and non-randomised designs which measure disease incidence before and after vaccine introduction. The probe approach can be incorporated into the design of a vaccine efficacy study (eg, the Indonesian Hib vaccine study) or it can be applied retrospectively or prospectively to studies designed primarily to measure vaccine efficacy

□ vaccine probe studies may add evidence to potential H impact of a vaccine with low VE by demonstrating impact against non specific syndromes (fever) or outcomes (hosp, AB use, visit)