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Research questions

Wil vaccination be effective?
« 1 licensed, 5 others Iin dev
« Should we expect vector control to work?

[t often appears not to

« Singapore: >$100 mil/year

 "Revenge against the grandchildren”
* Beneficial synergy?
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Abstract



CMDVI: Jit et al. (In review)

Comparative modelling of dengue vaccine public health impact
(CMDVI), sponsored by WHO

Members of CMDV!I (in authorship order, with joint first authors

starred): Mark Jit*, Stefan Flasche*, Isabel Rodriguez-Barraquer*, Laurent
Coudeville*, Mario Recker*, Katia Koelle*, George Milne*, Thomas Hladish?*,
Alex Perkins*, Derek Cummings, llaria Dorigatti, Daniel Laydon, Guido
Espaia, Joel Kelso, Ira Longini, Jose Lourenco, Carl A.B. Pearson, Robert C.
Reiner, Luis Mier-y-Teran-Romero, Kirsten Vannice, Neil Ferguson

Provide information to WHO/SAGE for use in developing
recommendations on the use of dengue vaccine

Understand the key features of dengue vaccine models that
Influence modelling results

Help country-level decision makers interpret the results of
modelling evidence.



Reported cases

Serotype

Dengue in Yucatan, 1979-2013
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Agent based model

People Mosquitoes

* Home * Location

« Day location * Age

* Age * Infection state

* |nfection state  May move once per
+ Immune state day

 May stay home If
sick



Dengue model ==
overview

1.82 million people “ay
38% employed wm
28% In school f L
34% stay at home (==

376k Households (5% sample, municipality)
96k Workplaces (size, postal code)
3.4k Schools (postal code)

Hladish et al. PLOS NTDs (2016)
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1km censored
Delaunay
triangulation

50 km
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Observed cases

Observed seasonality (1995-2011)
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Pr{precipitation}

Rainfall > Mosquito population
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Temperature (°C)

Temperature = Incubation Period
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Log-normal EIP distribution based on hourly temperatures in Merida, 1995-2011

EIP(T) = el (""" ) +01] atter chan and Johansson (2012)
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Relative scale

Emergent seasonality

EIP

Mosquito pop. Ro>1
Simulated cases

Observed cases
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Annual reported cases per 100,000 people

Reconstruct the past,
forecast the future

Priming DDT Fitting Forecast
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Seroprevalence (any serotype)
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Vaccine mechanisms

Simple Efficacy

Serotype-specific
Moderately efficacious
Protects against infection
Leaky

Durable

Described in

Hladish et al. PLOS NTDs (2016)

Vaccine Replaces Infection
« Serotype-nonspecific

* Initial 100% efficacy
 Wanes to 0% over 2 years

* Replaces infection

Described in

Jit et al (in review)



SE
“Simple efficacy” assumptions

(Efficacy: direct, individual effect)

Serotype Vaccine Efficacy”

Antibody positive Antibody negative Overall™
1 60 30 50
2 o4 27 42
3 90 45 74
4 95 48 78

* Assuming leaky vaccine effect

** Based on 60% antibody positive

Hladish et al. PLOS NTDs (2016)



“Vaccine replaces infection” Rl

assumptions

O
Unvaccinated q q w q q

Vaccinated %ﬁ\
seronegative q q w q

Vaccinated - =% - ln| —) ln|

Probability of severe disease upon infection
Low [l [ High Ferguson et al. Science (2016), Jit et al. (in review)




Vaccination strategies

* Routine vaccination
* Routine vaccination of 9 year-olds every year
* Routine vaccination with one-time catchup
 One time catch-up up to 17 or 30 year-olds
 80% coverage in all cases



SE

Overall impact of vaccination on dengue cases (NTD assumptions -- 80% coverage)
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SE

Cumulative effectiveness
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SimpleEfficacy Replacesinfection

Overall cumulative effectiveness routine and catchup vaccination Overall effectiveness of vaccination (WHO assumptions -- 80% coverage)
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Cumulative effectiveness
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Cumulative cases averted
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Effect of vaccinee age on overall cumulative cases averted RI
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Effects of
new vector reduction
plus vaccination



Indoor residual spraying

Assume 25% of houses are randomly selected &
treated during July-September

Efficacy = 80% (reduction in equilibrium pop size
In treated houses)
Corresponds to 13% daily mortality due to IRS

Treatment lasts 90 days

"Efficacy & durability based on unpublished data from

Gonzalo Vazquez Prokopec, Emory University



Cumulative effectiveness
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Cumulative effectiveness
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Overall conclusions (1 of 2)

Short-term effectiveness good

Long-term effectiveness may be modest — data needed
Cumulative effectiveness always positive

Modest interventions not bad, not impressive

Noisy empirical data may obscure effectiveness
Waning vaccine & IRS effectiveness don’t persist

« Vac: Population loses vaccine-induced immunity
* |RS: Population acquires less natural immunity

Elimination unlikely



Overall conclusions (2 of 2)

« Catchup and IRS can have major near-term (~5 years)
benefit

« Some years may have > baseline burden
« Some years with larger-than-normal epidemics are possible
« Cumulative effectiveness & cases averted always positive

« Cost-benefit analysis needed to find balance
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