Diarrheal Diseases in Asia: overview and update

G. Balakrish Nair, PhD

Ag. Regional Advisor Research Policy and Cooperation WHO, SEARO

- Global and Regional burden of diarrheal disease
- Emerging trends in the etiology of diarrheal pathogens
- New Frontiers
 - Asymptomatic infections
 - Intestinal microbiota and diarrhoel pathogens
 - Polymicrobial infections
- Interventions for diarrheal diseases
- Conclusion

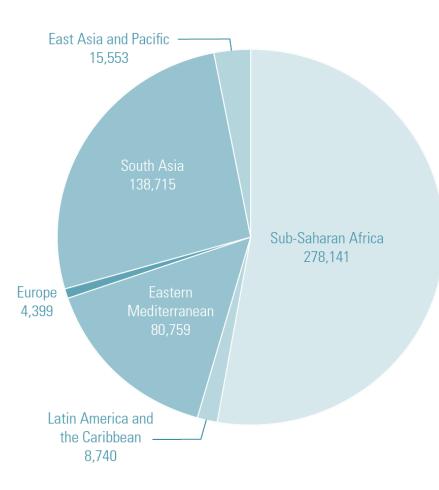
Global and Regional burden of diarrheal diseases

Top 25 causes of Years of Life Lost due to premature mortality from 1990 to 2010


CAUSES OF PREMATURE DEATH

Years of life lost (YLLs) quantify premature mortality by weighting younger deaths more than older deaths.

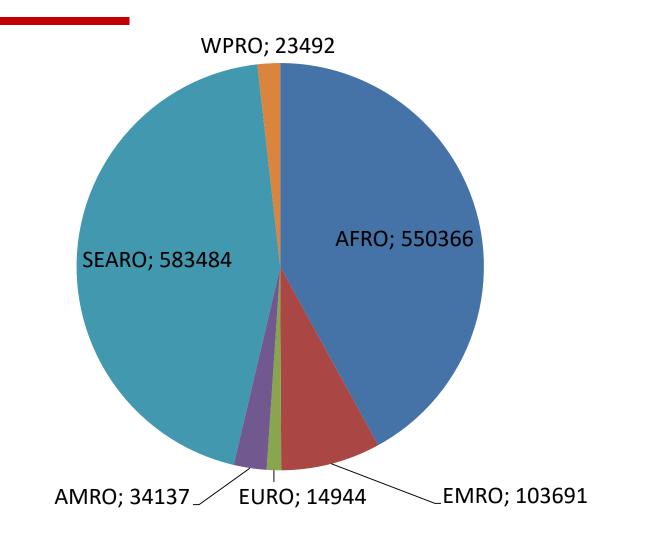
Ranks for top 25 causes of YLLs 1990-2010, India

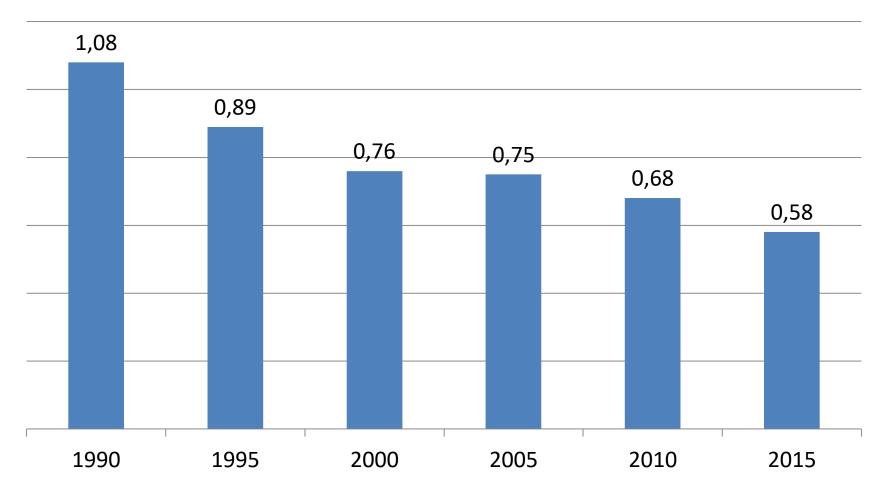

# YLLs in thousands	5 61 1225 1996 2010, india	# YLLs in thousa	nds
(% of total) Rank and disorder 1990	Rank and disorder 2010	(% of total)	% change
57,828 (12.4%) 1 Diarrheal diseases	1 Preterm birth complications	27,808 (7.4%)	-31
47,806 (10.3%) 2 Lower respiratory infections	2 Lower respiratory infections	26,127 (6.9%)	-45
40,134 (8.6%) 3 Preterm birth complications	3 Diarrheal diseases	25,589 (6.8%)	-56
20,533 (4.4%) 4 Tuberculosis	4 Ischemic heart disease	25,253 (6.7%)	66
21,336 (4.6%) 5 Neonatal sepsis	5 COPD	17,761 (4.7%)	2
18,808 (4.1%) 6 Protein-energy malnutrition	-6 Neonatal sepsis	16,594 (4.4%)	-23
17,426 (3.8%) 7 COPD	7 Tuberculosis	13,732 (3.6%)	-32
15,294 (3.3%) 8 Ischemic heart disease	8 Self-harm	12,981 (3.4%)	154
13,328 (2.9%) 9 Neonatal encephalopathy	9 Road injury	12,588 (3.3%)	63
16,651 (3.5%) 10 Measles	10 Stroke	11,726 (3.1%)	54
9,317 (2.0%) 11 Meningitis	11 Neonatal encephalopathy	11,099 (2.9%)	-17
9,031 (1.9%) 12 Tetanus	12 HIV/AIDS	8,696 (2.3%)	6,147
7,904 (1.7%) 13 Stroke	13 Fire	8,172 (2.2%)	19
7,923 (1.7%) 14 Maternal disorders	14 Congenital anomalies	7,073 (1.9%)	4
7,399 (1.6%) 15 Road injury	15 Protein-energy malnutrition	6,528 (1.7%)	-66
7,057 (1.5%) 16 Malaria	16 Cirrhosis	6,134 (1.6%)	84
6,949 (1.5%) 17 Congenital anomalies	17 Meningitis	5,790 (1.5%)	-38
6,694 (1.4%) 18 Fire	18 Diabetes	5,056 (1.3%)	92
6,446 (1.4%) 19 Encephalitis	19 Measles	5,861 (1.5%)	-63
5,699 (1.2%) 20 Self-harm	20 Drowning	4,717 (1.2%)	1
4,578 (1.0%) 21 Drowning	21 Encephalitis	4,214 (1.1%)	-35
4,082 (0.9%) 22 Peptic ulcer	22 Falls	4,281 (1.1%)	85
3,873 (0.8%) 23 Syphilis	23 Maternal disorders	3,627 (1.0%)	-54
3,911 (0.8%) 24 Asthma	24 Typhoid fevers	4,336 (1.1%)	34
3,849 (0.8%) 25 Mechanical forces		3,130 (0.8%)	-20
27 Cirrhosis	27 Peptic ulcer		
30 Typhoid fevers	32 Mechanical forces		
31 Diabetes	36 Malaria		
33 Falls	1 (V41 Syphilis		
78 HIV/AIDS	44 Tetanus		

Percentage of deaths among children under age 5 attributable to diarrhea, 2015


Source: WHO and Maternal and Child Epidemiology Estimation Group (MCEE) provisional estimates 2015

Regional Burden of Diarrhea Mortality, Ages 0–4 Years, 2015

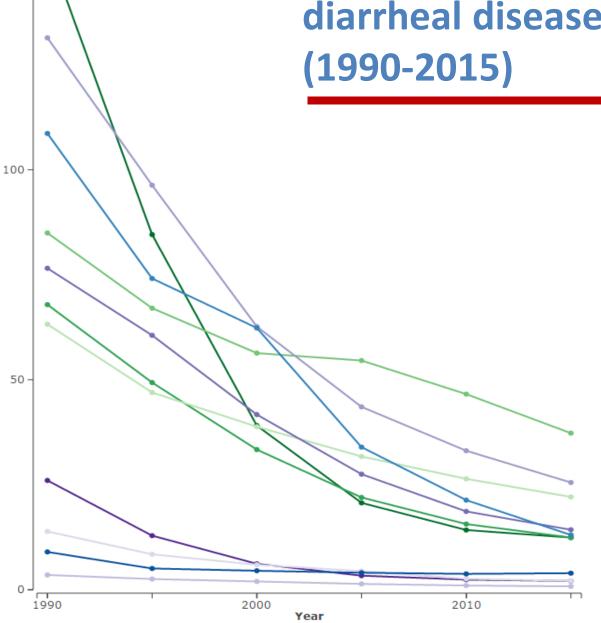

- Estimated number of deaths due to diarrhea 526,000
- 89% drop from 1980 and a striking 58% from 2000 to 2015
- Sub-Saharan Africa and South
 Asia account for 90% of the total
- 72% of the diarrhea deaths occur in the first two years of life


Annual number of deaths from diarrheal diseases among the 0–4 year age group in low- and middle-income countries (LMICs)

Deaths due to Diarrheal Diseases in WHO Regions

Source: Institute for Health Metrics and Evaluation. GBD 2015 © 2017 University of Washington. https://vizhub.healthdata.org/gbd-compare/

Deaths due to Diarrheal Diseases in SEAR (in millions)


Source: Institute for Health Metrics and Evaluation. GBD 2015 © 2017 University of Washington. https://vizhub.healthdata.org/gbd-compare/

Trend of mortality due to diarrheal diseases in SEAR (1990-2015)

> Bangladesh Bhutan India Indonesia Maldives Myanmar Nepal North Korea Sri Lanka Thailand Timor-Leste

150-

Major interventions in Diarrheal diseases

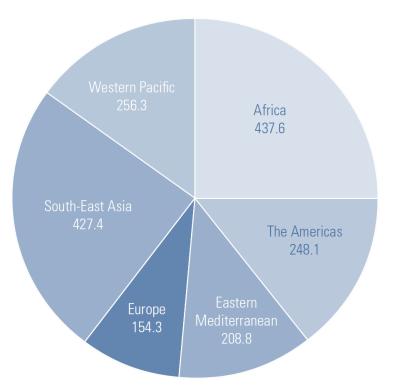
- Early use of Oral rehydration solutions
- Appropriate use of antibiotics for bloody diarrhea and

dysentery

- Continued breast feeding
- Nutritional interventions for persistent diarrhea
- Rapid restoration of nutritional status in all diarrhea patients

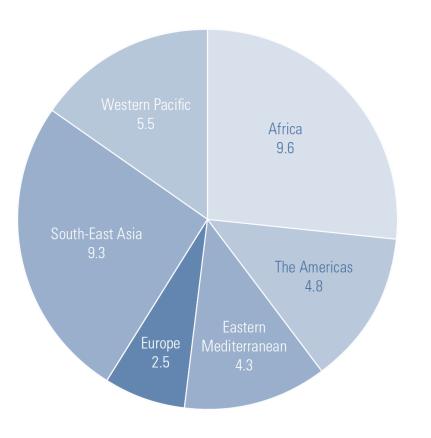
Major killers in India

1 Ischemic heart disease	1 Ischemic heart disease
2 Lower respiratory infect	2 COPD
3 Diarrheal diseases	3 Lower respiratory infect
4 Tuberculosis	4 Diarrheal diseases
4 Tuberculosis 5 COPD 6 Neonatal preterm birth	5 Tuberculosis
6 Neonatal preterm birth	6 Hemorrhagic stroke
7 Neonatal encephalopathy	7 Ischemic stroke
8 Hemorrhagic stroke	8 Diabetes
9 Asthma	9 Neonatal preterm birth
10 Measles	10 Neonatal encephalopathy
11 Ischemic stroke	11 Self-harm
Diarrheal diseases Both se	12 Hypertensive heart disease
Year: 1990	13, Diarrheal diseases
Rank: 3	1 Ischemic heart disease
Change: -56.11%	15, Rank: 4
Rate: 84.94 deaths per 100,000 (77.64 - 90.53)	$\sim 10^{-1}$ Change: -56.11%
17 Encephalitis	Rate: 37.28 deaths per 100,000 (33.79 – 41.4
18 Peptic ulcer disease	18 HIV/AIDS other
19 Fire & heat	19 Encephalitis
20 Self-harm	20 Ileus & obstruction
21 Malaria	21 Motor vehicle road inj
22 Other neonatal	22 Motorcyclist road inj
23 Protein-energy malnutrition	23 Diabetes CKD
24 Ileus & obstruction	25 Typhoid fever


Source: Institute for Health Metrics and Evaluation. GBD 2015 © 2017 University of Washington. https://vizhub.healthdata.org/gbd-compare/

Major killers in under 5 children in India

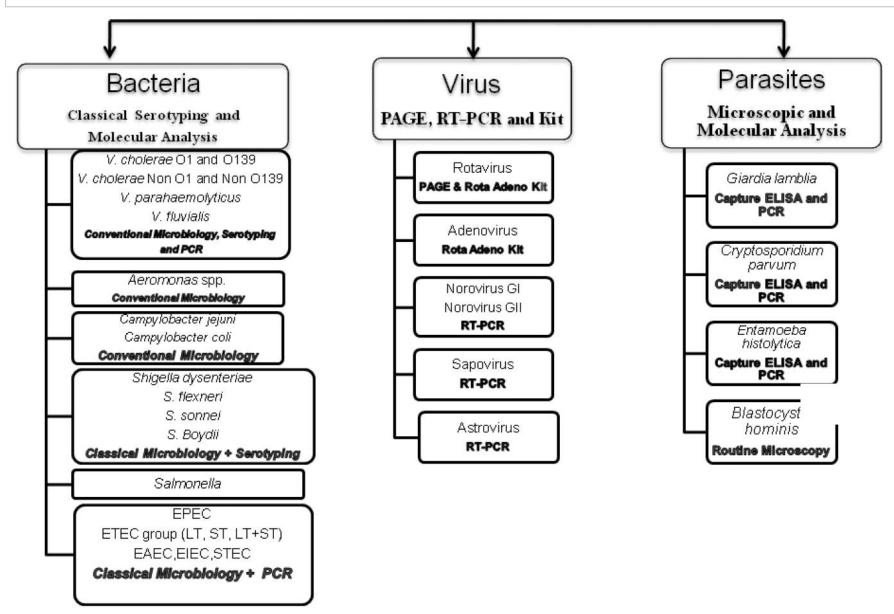
		2013 Talik	
	1 Neonatal preterm birth 547,483.75)	1 Neonatal preterm birth	
	2 Lower respiratory infect	2 Neonatal encephalopathy	
	3 Neonatal encephalopathy	3 Lower respiratory infect	
	4 Diarrheal diseases	4 Diarrheal diseases	
066	5 Measles	5 Other neonatal	7 2
6	6 Tetanus	6 Neonatal sepsis	201
-	7 Other neonatal	7 Congenital heart	N
	8 Neonatal sepsis	8 Other congenital	
	9 Protein-energy malnutrition	9 Encephalitis	
	10 Congenital heart	10 Typhoid fever	
	11 Neonatal hemolytic	11 Measles	
	12 Whooping cough	12 Protein-energy malnutrition	
	13 Malaria	13 Neonatal hemolytic	
	14 Syphilis	14 HIB meningitis	
	15 Encephalitis	15 Tetanus	
Diarrhea Year: 19 Rank: 4	l diseases 990	Diarrheal diseases 2015 r Year: 2015 Rank: 4	ank h
-	: -69.66% '7.68 deaths per 100,000 (232.87 — 312.01)	Change: -69.66% Rate: 84.24 deaths per 100,000 (72.07 -	08 52)


Source: Institute for Health Metrics and Evaluation. GBD 2015 © 2017 University of Washington. https://vizhub.healthdata.org/gbd-compare/

Regional Burden of Diarrhea, Ages 0–4 Years, 2010

- Estimated global diarrhea incidence rates have not changed significantly since 1980
 - Children in Sub Saharan Africa and South
 Asia experience an average of 2.7
 episodes of diarrhea per year
- Most mild to moderate lasting an avg . of
 4.3 days
- Incidence rates vary but are higher in children in LIC and LMIC countries and highest in Sub-Saharan Africa (3.3 episodes per child per year)
 Fischer Walker and others 2013; Keusch et al 2016;

Regional Burden of Severe Diarrhea Episodes, Ages 0–4 Years, 2010

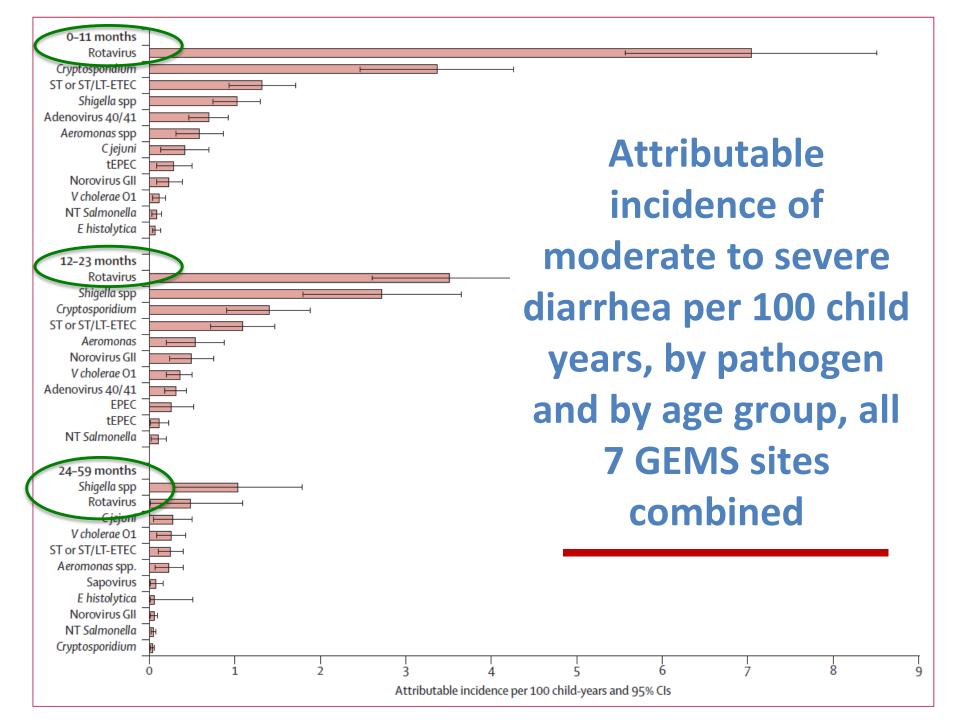

- 5 to 15% of watery diarrhea
 cases progress to persistent
 diarrhea
- More than 50 percent of severe episodes occur in Sub Saharan Africa and South-East Asia

Fischer Walker and others 2013; Keusch et al 2016;

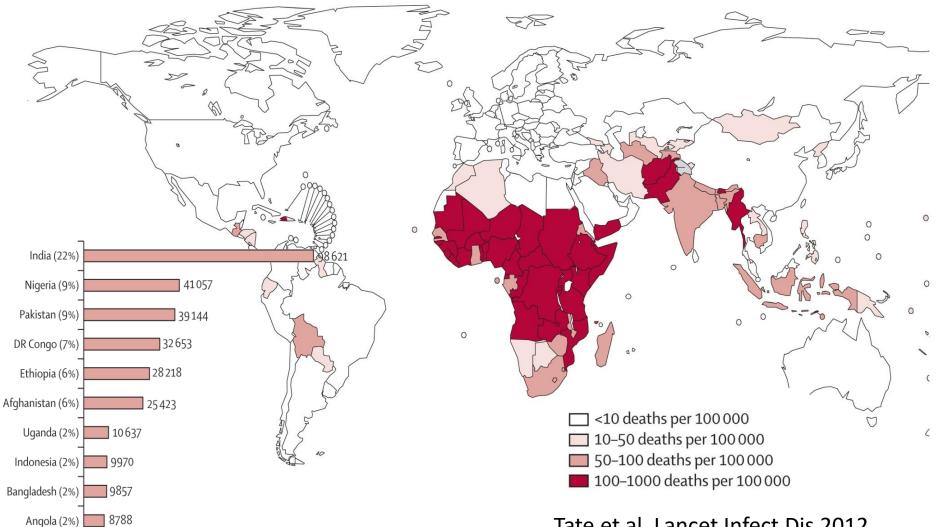
Emerging trends in the etiology of diarrheal pathogens

Many bacterial, viral and parasitic etiologies cause diarrheal disease but only a few account for a major portion of the burden

Bacterial Viral and Parasitic diarrhoeal pathogens



Diarrheal Etiologies


- In one study, 40 % of cause-specific attributable diarrhea mortality was due to two organisms: rotavirus (27.8%) and EPEC (11.1%) (Lanata and others 2013)
- Another large, multisite, clinic-based prospective case-control study of children under age five years with MSD identified four pathogens – rotavirus, Cryptosporidium, ETEC and Shigella responsible for most attributable episodes of MSD (Kotloff et al 2013)

Diarrheal Etiologies

- Certain pathogens such as Rotavirus, Shigella, Vibrio cholerae and Adenovirus serotypes 40/ 41 were more commonly isolated in children with moderate to severe illness.
- 72% of controls without diarrhoea also harbored one or more putative pathogens and 31% had two or more reflecting the fecally contaminated environment in which they live.

Rotavirus deaths estimates for 2008

Tate et al, Lancet Infect Dis 2012

RESEARCH

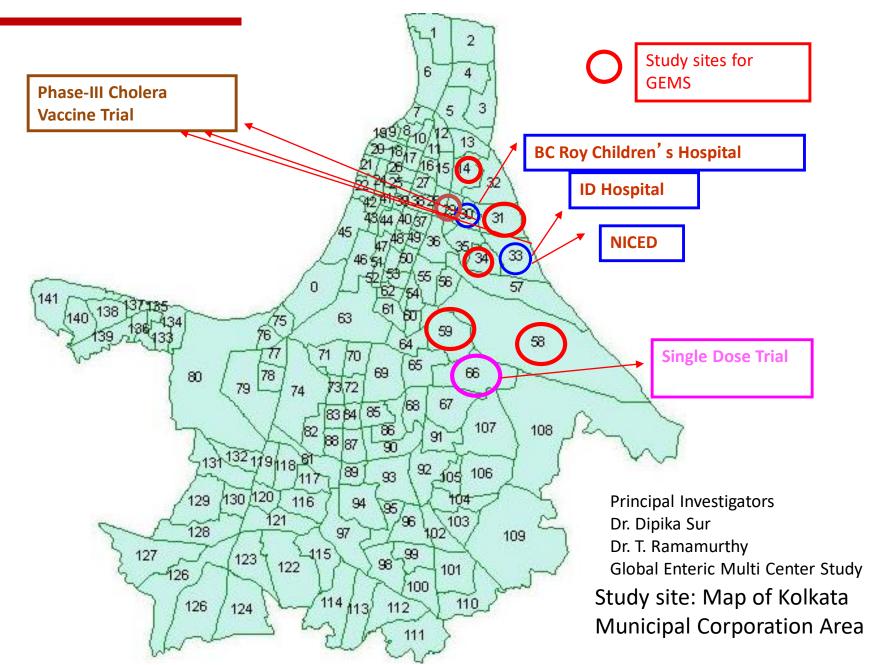
Open Access

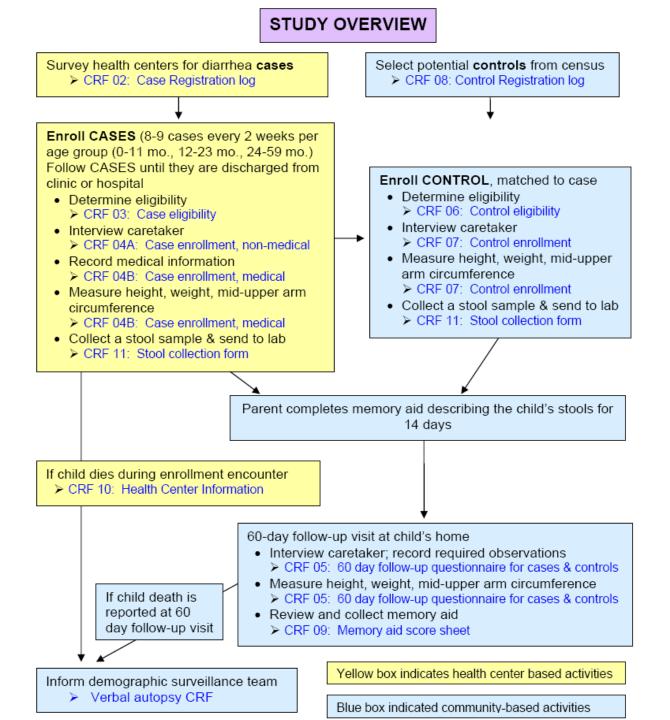
Emerging trends in the etiology of enteric pathogens as evidenced from an active surveillance of hospitalized diarrhoeal patients in Kolkata, India

Gopinath Balakrish Nair^{*1}, Thandavarayan Ramamurthy¹, Mihir Kumar Bhattacharya¹, Triveni Krishnan¹, Sandipan Ganguly¹, Dhira Rani Saha¹, Krishnan Rajendran¹, Byomkesh Manna¹, Mrinmoy Ghosh², Keinosuke Okamoto³ and Yoshifumi Takeda⁴

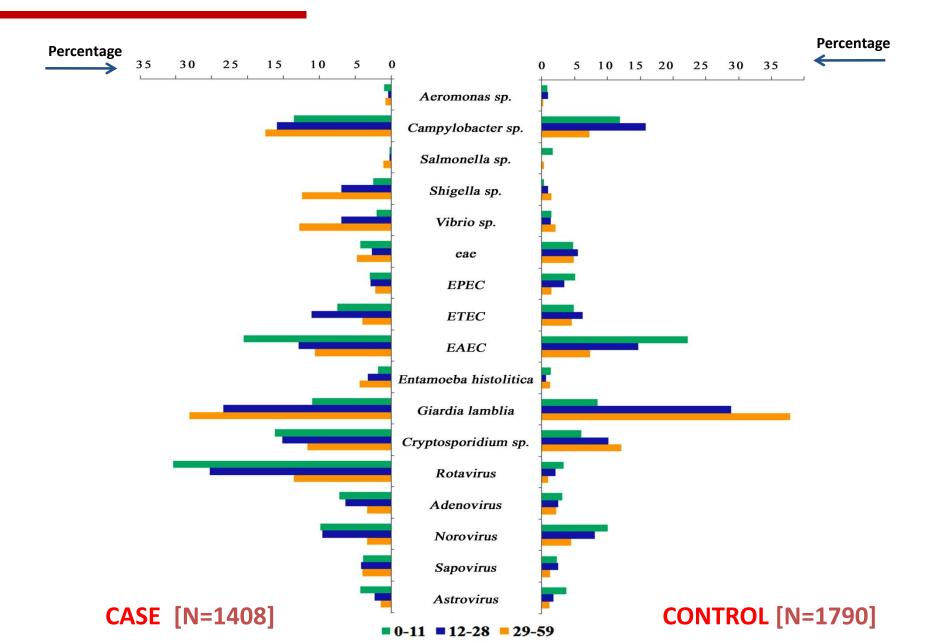
Age wise isolation of enteric pathogens

(Nov 2007 to Oct 2009)


	Age <5 years					
Pathogen	0 - 11 month	12 - 23 month	24 - 59 month	Total Age <5 yr	Age \geq 5 yr (n=1871)	All Age Group (n=2519)
	(n=245)	(n=227)	(n=176)	(n=648)	(11-10/1)	(11-2319)
	n (%)	n (%)	n (%)	n (%)	n (%)	n (%)
Bacteria					<u></u>	-
Vibrio cholerae O1	22(9)	34(15)	50(28.4)	106(16.4)	548(29.3)	654(26)
Vibrio cholerae O139	0	0	0	0	2(0.1)	2(0.1)
Vibrio cholerae Non O1 Non O139	2(0.8)	1(0.4)	1(0.6)	4(0.6)	51(2.7)	55(2.2)
V. parahaemolyticus	1(0.4)	0	2(1.1)	3(0.5)	71(3.8)	74(2.9)
Vibrio fluvialis	3(1.2)	7(3.1)	1(0.6)	11(1.7)	44(2.4)	55(2.2)
Aeromonas spp.	1(0.4)	2(0.9)	1(0.6)	4(0.6)	21(1.1)	25(1)
Campylobacter jejuni	18(7.3)	22(9.7)	20(11.4)	60(9.3)	58(3.1)	118(4.7)
C. coli	1(0.4)	0	1(0.6)	2(0.3)	20(1.1)	22(0.9)
Shigellae	8(3.3)	21(9.3)	22(12.5)	51(7.9)	103(5.5)	154(6.1)
Salmonella	0	1(0.4)	1(0.6)	2(0.3)	21(1.1)	23(0.9)
EPEC	11(4.5)	8(3.5)	2(1.1)	21(3.2)	24(1.3)	45(1.8)
ETEC Group	9(3.7)	13(5.7)	5(2.8)	27(4.2)	87(4.6)	114(4.5)
EAEC	32(13.1)	28(12.3)	18(10.2)	78(12)	81(4.3)	159(6.3)
Virus						
Rotavirus	115(46.9)	124(54.6)	39(22.2)	278(42.9)	124(6.6)	402(16)
Adenovirus	24(9.8)	22(9.7)	8(4.5)	54(8.3)	44(2.4)	98(3.9)
Norovirus G1	3(1.2)	5(2.2)	3(1.7)	11(1.7)	21(1.1)	32(1.3)
Norovirus G2	10(4.1)	5(2.2)	2(1.1)	17(2.6)	25(1.3)	42(1.7)
Sapovirus	10(4.1)	4(1.8)	4(2.3)	18(2.8)	13(0.7)	31(1.2)
Astrovirus	5(2)	7(3.1)	5(2.8)	17(2.6)	38(2)	55(2.2)
Parasite						
Blastocystis hominis	0	0	0	0	11(0.6)	11(0.4)
Entamaeba histolytica	8(3.3)	13(5.7)	5(2.8)	26(4)	56(3)	82(3.3)
Giardia lamblia	25(10.2)	34(15)	33(18.8)	92(14.2)	189(10.1)	281(11.2)
Cryptosporidium spp.	37(15.1)	22(9.7)	12(6.8)	71(11)	87(4.6)	158(6.3)


New Frontiers in Diarrhoeal Diseases

Subclinical or Asymptomatic infections

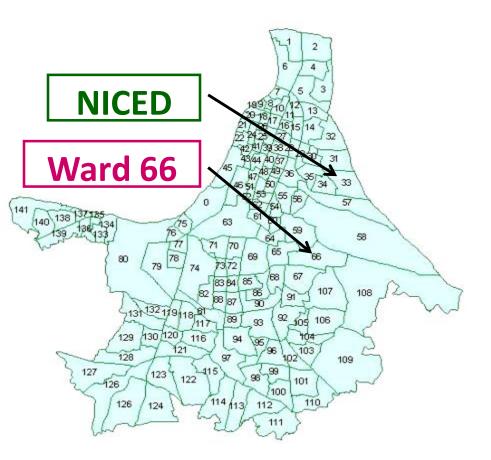

The GEMS study showed that 72% of controls without diarrhoea also harbored one or more putative pathogens and 31% had two or more reflecting the fecally contaminated environment in which they live.

Case control study on diarrhoea in urban slums of Kolkata

Community Diarrhoea in an urban slum in Kolkata

Role of probiotic in preventing acute diarrhoea in children: a community-based, randomized, double-blind placebo-controlled field trial in an urban slum

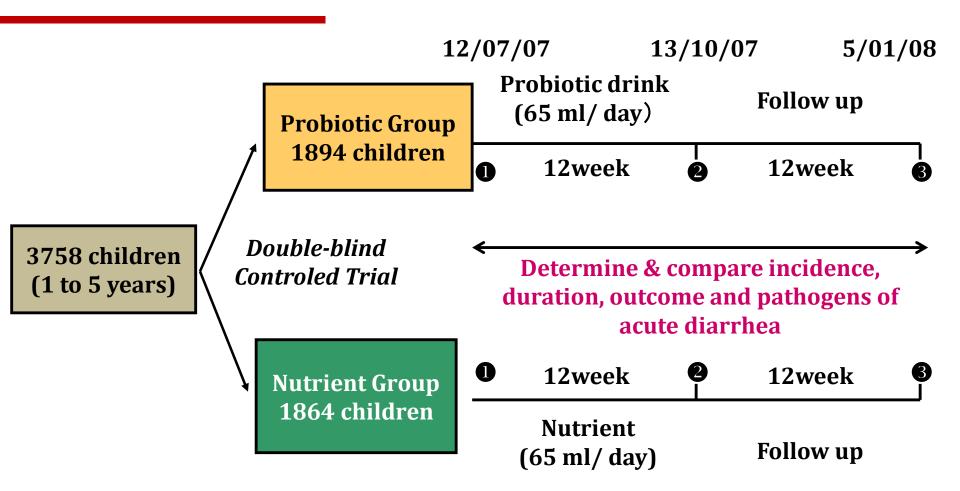
D. SUR¹*, B. MANNA¹, S. K. NIYOGI¹, T. RAMAMURTHY¹, A. PALIT¹, K. NOMOTO², T. TAKAHASHI², T. SHIMA², H. TSUJI², T. KURAKAWA², Y. TAKEDA³, G. B. NAIR¹ and S. K. BHATTACHARYA⁴


¹ National Institute of Cholera and Enteric Diseases, Kolkata, India

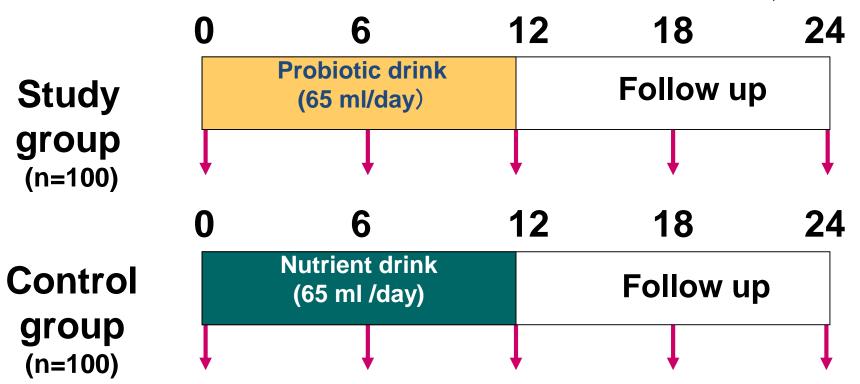
² Basic Research Department II, Yakult Central Institute for Microbiological Research, Yaho, Kunitachi, Japan

³ Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India

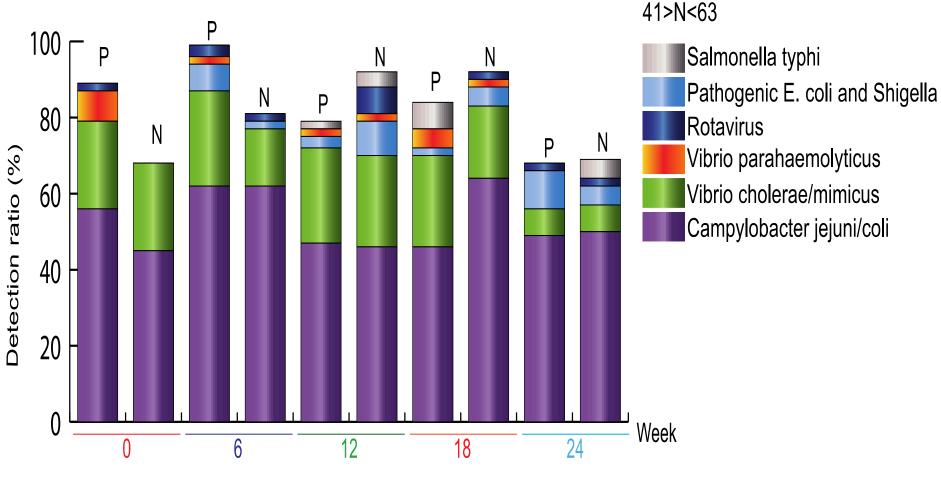
⁴ Indian Council of Medical Research, New Delhi, India


(Accepted 29 June 2010; first published online 30 July 2010)

Kolkata Municipal Corporation


The plan of study

Nutritional assessment (height, weight and mid-arm circumference) were done at three points (**0**,**2** and **3**, beginning, after 12weeks, and at the end of follow-up)


Periodical analysis of fecal microbiota

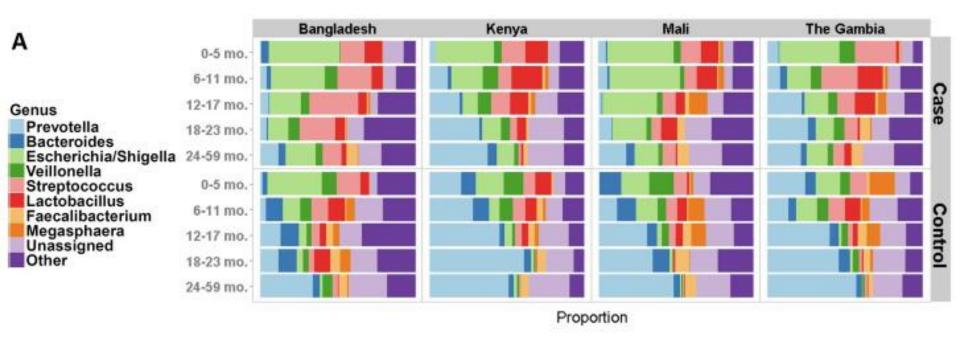
(week)

 : collection of fecal sample for analysis of microbiota, pH and organic acid
 Feces could be collected from 131 of the 200 subjects

Pathogens detected in the gut of apparently healthy children who participated in the probiotic trial

Time

Detection of *Vibrio cholerae/mimicus* in faeces collected from healthy children


Detection frequency	Detection rate	(%)	Bacterial counts
1	42/133 ^a	31.6	4.2 ± 1.5^{b}
2	21/133	15.8	3.8 ± 1.0
3	6/133	4.5	4.5 ± 1.3
4	0/133	0.0	-
5	1/133	0.8	4.3 ± 0.9
Total	70/133	52.6	4.1 ± 1.3
Twice or more Twice or more	28/133	21.1	4.0 ± 1.1
in a row	17/133	12.8	4.2 ± 1.1

^a No. of positive subjects/No. of subjects tested

^b Mean \pm SD, log ₁₀ cells/g feces

Comparison of diarrheal and non-diarrheal stool

Proportional abundance of genera in non-diarrheal controls and MSD cases in different age categories

Each color represent a different group. The order and color for each group is the same for controls and MSD cases

Subclinical (asymptomatic) infections Environmental Enteric Dysfunction

- Mounting and diverse evidence suggests that subclinical infections with diarrhoea pathogens can cause physiological and structural alterations of the gut with diverse consequences on child nutrition and growth.
- Subclinical infections reduce nutrient absorption and impair growth by many of the same mechanisms present during clinical episodes.
- *Giardia intestinalis* causes diarrhoea with growth retardation in infants; often identified in the stools of asymptomatic children in endemic areas.

Because asymptomatic infections were twice as common as diarrhoea their ultimate effects might exceed those of clinical diarrhoea

New Frontiers in Diarrhoeal Diseases

Diarrhoeal Diseases and Intestinal microbiota

THE HUMAN

Bacteria, fungi, and viruses outnumber human cells in the body by a factor of 10 to one. The microbes synthesize key nutrients, fend off pathogens and impact everything from weight gain to perhaps even brain development. The Human Microbiome Project is doing a census of the microbes and sequencing the genomes of many. The total body count is not in but it's believed over 1,000 different species live in and on the body.

25 SPECIES

in the stomach include:

500-1,000 SPECIES

in the intestines include: -

Lactobacillus casei
Lactobacillus reuteri
Lactobacillus gasseri
Escherichia coli
Bacteroides fragilis
Bacteroides thetaiotaomicron
Lactobacillus rhamnosus
Clostridium difficile

MICROBIOME 600+

 in the mouth, pharynx and respiratory system include:

Streptococcus viridans
 Neisseria sicca
 Candida albicans
 Streptococcus salivarius

1,000 SPECIES

Pityrosporum ovale
Staphylococcus epidermidis
Corynebacterium jeikeium
Trichosporon
Staphylococcus haemolyticus

60 SPECIES in the urogenital tract include: Ureaplasma parvum Corynebacterium aurimucosum

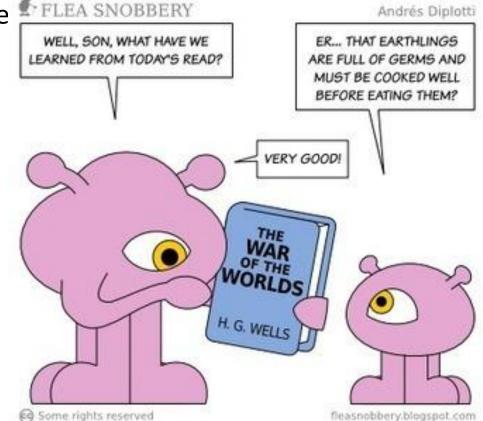
Human Microbiome Project

A total of 4,788 specimens from 242 screened and phenotyped adults (129 males, 113 females) were used for this study, from a cohort of 300 individuals

Women were sampled at 18 body habitats, men at 15. 2

SOURCES: NATIONAL INSTITUTES OF HEALTH, SCIENTIFIC AMERICAN: HUMAN MICROBIOME PROJECT

Dean Tweed + POSTMEDIA NEWS / IMAGE: Fotolia


Source: NIH

Gut Microbiota

- Bacteroidetes and Firmicutes make up around 90% of the gut microbiota
- Each individual harbors his/her own distinctive pattern of gut microbial communities
- For a given individual, the fecal microbiota remains remarkably stable over a person's lifetime

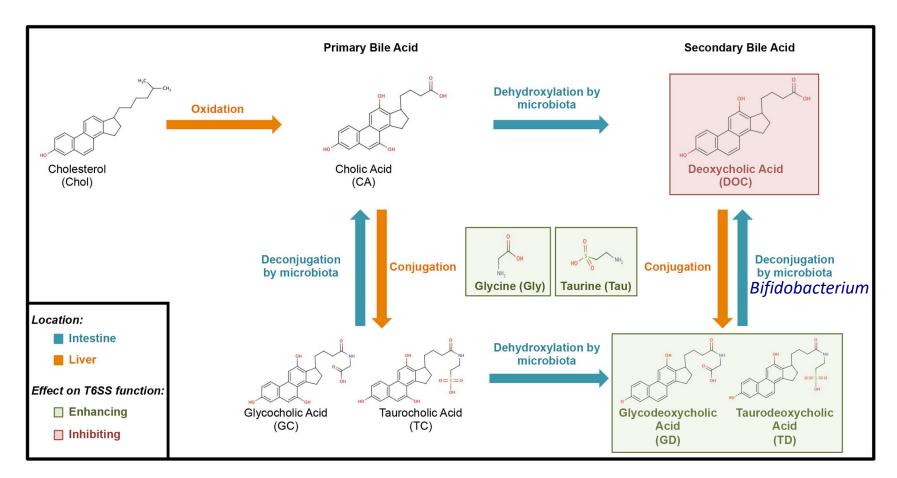
Gut Microbiota - Functions

- Prevents colonization by pathoge
- "Educates the immune system"
- Metabolic role
 - Caloric salvage
 - Produces
- SCFA
- Vitamin K and folate
- Participates in drug metabolism
- Activates 5-ASA
- Deconjugates bile acids

LETTER

doi:10.1038/nature13738

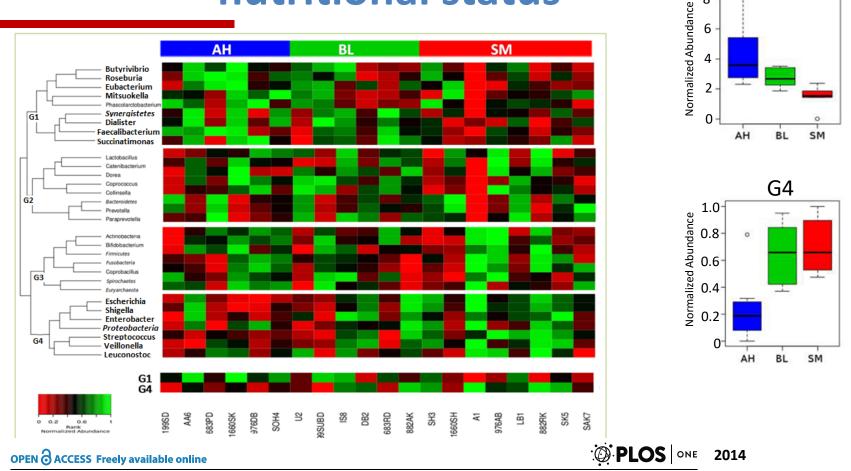
Members of the human gut microbiota involved in recovery from Vibrio cholerae infection


Ansel Hsiao¹, A. M. Shamsir Ahmed^{2,3}, Sathish Subramanian¹, Nicholas W. Griffin¹, Lisa L. Drewry¹, William A. Petri Jr^{4,5,6}, Rashidul Haque³, Tahmeed Ahmed³ & Jeffrey I. Gordon¹

Given the global burden of diarrhoeal diseases1, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhoea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. Here we conduct a detailed time-series metagenomic study of faecal microbiota collected during the acute diarrhoeal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease2. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children3. To define the underlying mechanisms, we introduce into gnotobiotic mice an artificial community composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children3. One of the species, Ruminococcus obeum, exhibits consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses.

to D-Ph4. Every diar rhoeal stool was collected from every participant. Faecal samples were also collected every day for the first week after discharge (recovery phase 1, R-Ph1), weekly during the next 3 weeks (R-Ph2), and monthly for the next 2 months (R-Ph3). For each individual, we selected a subset of samples from D-Ph1 to D-Ph3 (Methods), plus all samples from D-Ph4 to R-Ph3, for analysis of bacterial composition by sequencing PCR amplicons generated from variable region 4 (V4) of the 16S ribosomal RNA (rRNA) gene (Supplementary Information, Extended Data Fig. 1 a and Supplementary Table 3). Reads sharing 97% nucleotide sequence identity were grouped into operational taxonomic units (97%-identity OTUs; Methods).

We identified a total of 1,733 97%-identity OTUs assigned to 343 different species after filtering and rarefaction (Methods). V. cholerae dominated the microbiota of the seven patients with cholera during D-Ph1 (mean maximum relative abundance 55.6%), declining markedly within hours after initiation of oral rehydration therapy. The microbiota then became dominated by either an unidentified Streptococcus species (maximum relative abundance 56.2–98.6%) or by Fusobacterium species (19.4–


Bifidobacterium can repress V. cholerae virulence by modifying bile acids

Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is novel interaction between commensal bacteria, host factors, and Vc

Bachmann et al., 2015, PNTD

Variation of Microbiota across nutritional status

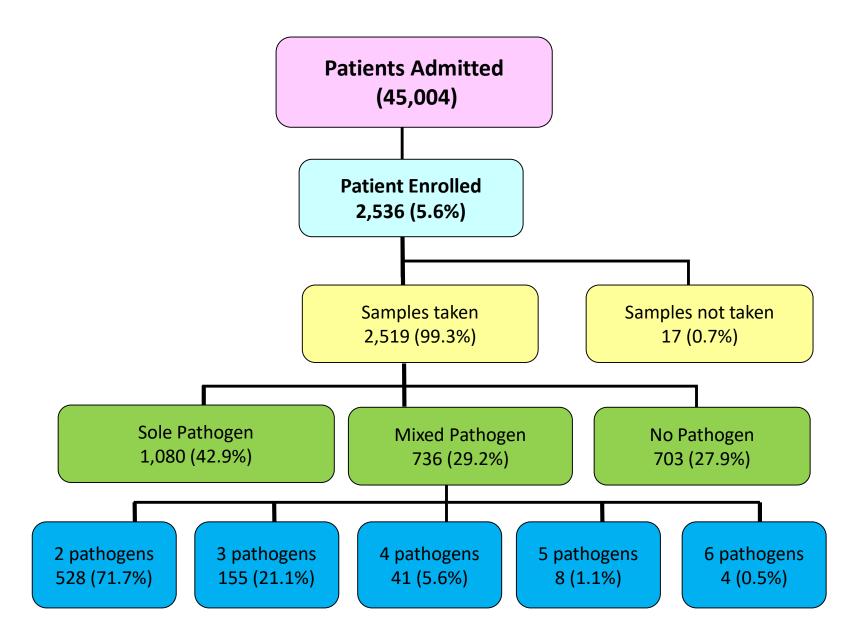
Gut Microbiomes of Indian Children of Varying Nutritional Status

G1

8

Tarini Shankar Ghosh^{1,9}, Sourav Sen Gupta^{2,9}, Tanudeep Bhattacharya¹, Deepak Yadav¹, Anamitra Barik³, Abhijit Chowdhury^{3,4}, Bhabatosh Das², Sharmila S. Mande¹*, G. Balakrish Nair²*

Our Research Questions


- What are pathogens doing in the gut of apparently healthy children and adults?
- Why are they present in low numbers?
- How does commensals restrain pathogen growth
- Why are the pathogens not eliminated from the gut microbiota?
- Does the presence of pathogens induce inflammation and
- What is the role of pathogens?

New Frontiers in Diarrhoeal Diseases

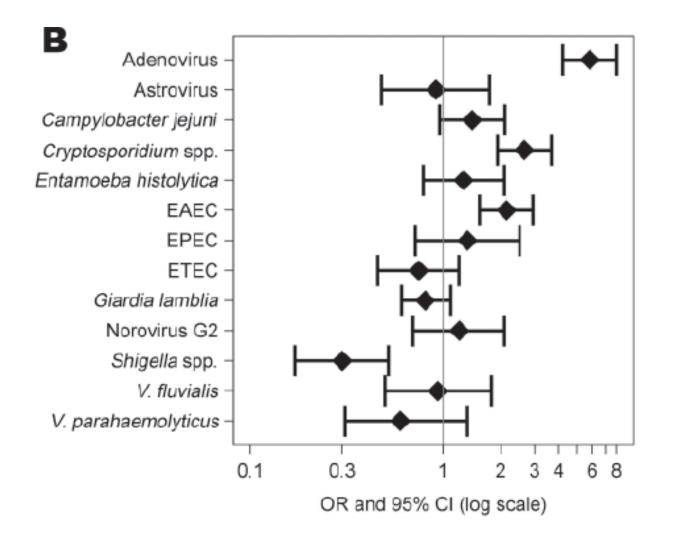
Polymicrobial Infections

Diarrhoea at the Infectious Diseases Hospital, Kolkata

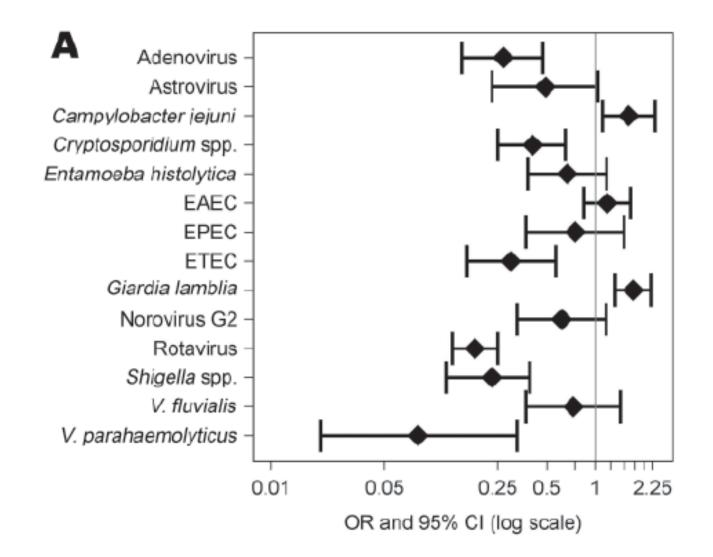
November 2007 and October 2009

Diarrheagenic Pathogens in Polymicrobial Infections

Brianna Lindsay,¹ T. Ramamurthy,¹ Sourav Sen Gupta, Yoshifumi Takeda, Krishnan Rajendran, G. Balakrish Nair, and O. Colin Stine


Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 4, April 2011

What is the relationship between pathogens associated with mixed infections?


Testing Possible Associations

To test for possible associations, we used the Fisher Exact test to compare pairs of pathogens (1, both or neither) with an independent assortment based on the overall frequency with which pathogens were detected. To establish criteria for statistical significance, we calculated p values, odds ratios and 95% confidence intervals.

Odds ratios (ORs) showing odds of rotavirus cooccurring with various other pathogens

Odds ratios (ORs) showing odds of Vibrio cholerae co-occurring with various other pathogens

Polymicrobial infections associated with *Vibrio cholerae* and Rotavirus cases was non random

Interventions for Diarrheal Diseases

Category	Options
Therapeutic	 Oral rehydration solutions Antimicrobials for bloody diarrhea or dysentery Nutritional treatment of persistent diarrhea Zinc supplementation
Preventive	 Protected safe water Handwashing sanitary disposal of fecal waste Vaccines Improved nutrition, vitamin A and Zinc.

Vaccines against diarrheal diseases

- Rotavirus Two vaccines Merck and GSK are widely used
- A less expensive Indian manufactured vaccine named Rotavac

has been pre qualified by WHO and is approved for use in India

• Cholera vaccine – Dukoral and Shancol

Summary

- The burden of DD in children under age five years in LIMCs reduced dramatically
- Although there are no magic bullets to control the incidence of DD the following are highly effective:
 - Improved nutrition of young children
 - Water and sanitation improvement
 - Hand washing and implementation of simple but highly effective interventions such as ORS
 - Appropriate use of antibiotics
 - The role and cause of EED

Thank you for your attention