GLOBAL INFLUENZA HOSPITAL SURVEILLANCE NETWORK

RESULTS OF SEASON 2015-16

Serhat Unal M.D. Ankara, TURKEY

Barriers to adult immunization – Turkey

HUMAN VACCINES & IMMUNOTHERAPEUTICS 2017, VOL. 13, NO. 1, 213–215 http://dx.doi.org/10.1080/21645515.2016.1234556

COMMENTARY 3 OPEN ACCESS

Barriers to adult immunization and solutions: Personalized approaches

Devrim Emel Alicia, Abdullah Sayinerb, and Serhat Unalc

^aMedical Department, Pfizer PFE, Istanbul, Turkey; ^bDepartment of Chest Diseases, Ege University Faculty of Medicine, Izmir, Turkey; ^cDepartment of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey

ABSTRACT

Immunization is an important component of preventive healthcare services aiming to prevent and eventually eradicate infectious diseases by immunizing people before they become infected. Although immunization is an integral part of children's healthcare, this fact is underrated, even ignored in adults. In Turkey, adult immunization is available only for certain high risk groups such as health care professionals and populations aged > 65 y and under certain conditions including pregnancy, military service, travelpilgrimage, and employment procedures. The fact that diseases such as pneumococcal pneumonia, influenza, rubeola, varicella, hepatitis A, and tetanus, which could be associated with severe complications in adults, are vaccine-preventable indicates the importance of adult immunization. In addition to the healthcare providers' knowledge about immunization, effective policies of related professional associations and the management of this issue by regulatory authorities, people's awareness in protecting their own health is of utmost importance in achieving the targeted level of adult immunization. This article focuses on the characteristics of the individuals as one of the 3 main cornerstones (individual, healthcare providers, regulatory authorities and supporting organizations) of immunization practices and discusses barriers to adult immunization and recommends solutions.

ARTICLE HISTORY

Received 24 August 2016 Accepted 4 September 2016

KEYWORDS

adults; barriers; Immunization; solutions; vaccination

ABOUT THE OBJECTIVES

ABOUT THE PARTNERSHIP ABOUT THE FOUNDATION

RESULTS BY SEASONS

PUBLICATIONS JOIN 1

JOIN THE GIHSN

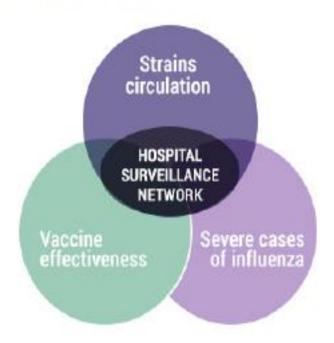
The Foundation for Influenza Epidemiology was created in September 2015 by Sanofi Pasteur under the auspices of Fondation de France to formalize several years of commitment to epidemiological research on severe influenza.

This funding mechanism was established to facilitate additional funding from other donors for this world-scale active surveillance project.

All donations collected through this foundation are dedicated to epidemiological research in the field of severe influenza and other respiratory viral diseases through the Global Influenza Hospital Surveillance Network (GIHSN).

Not -for- profit institutions with proposals aligned with the GIHSN scope and study design are eligible to apply for a grant from this foundation.

ABOUT THE STUDY


Rational and Scientific objectives

Severe cases of influenza requiring hospitalization are probably the most influential factors in term of flu vaccination advocacy and cost-benefit evaluation of vaccination. In addition, little is known about the effect of influenza vaccine on the prevention of severe disease. Indeed, previously published studies are prone to various biases.

A design based on a network of hospitals is easier to standardize for quality insurance reasons and easier to coordinate than a General Practitioners (GP) network approach. Finally the availability of diagnostic capacities at hospital make influenza case ascertainment more reliable.

The GIHSN has three main objectives:

- Evaluate the burden of severe influenza disease, defined as hospitalization related to community-acquired influenza or complications following an influenza infection;
- II. Quantify the distribution of the different influenza viruses (A(H1N(H3N2), B/Yamagata, and B/Victoria) among these severe cases; and
- III. Measure the effectiveness of influenza seasonal vaccines to prevent these hospitalizations using a test-negative design.

Institution: Turkish Society of Internal Medicine

Primary Investigator: Prof Serhat Unal, MD

Project Coordinator: Prof Mine Durusu Tanriover, MD

Epidemiologist: A. Tulay Bagci Bosi, MSc, PhD

- A non-profit organization for continuing medical education of internists and improvement of public health.
- Founded in 1995 as a non-profit organization.
- Turkish Society of Internal Medicine is a member of the European Federation of Internal Medicine and takes the lead in the ADVICE-Adult Vaccination Campaign in Europe-Working Group.

Background

- A national Sentinel Influenza Surveillance
 Network that is based on primary health care
 system has been established in 2005 in Turkey.
- Turkey has been involved in the network since 2012-13 season as a partner in GIHSN.

Objectives

Primary Objective

 Determine the frequency of influenza infections among acute admissions with influenza like illness in selected hospitals in Turkey and determine the burden of disease during the 2015-2016 season.

Secondary Objectives

- Determine the economical burden of influenza.
- Determine the vaccine effectiveness.

Methods

- Ethical Approval was taken from Hacettepe University, Faculty of Medicine Ethics Committee (GO 15/809-39). Good clinical practices and good laboratory practices were followed throughout the study.
- Fieldwork,
 - started on December 21, 2015 (52nd week)
 - ended on April 01, 2016 (13th week).

Turkish Statistical Institution for year 2015.

Participating hospitals

Name of Hospitals	Type of ward	Total # of	# beds for each
		beds per	ward
		hospital	
01-Hacettepe	Adult Emergency	689	35
University Adult	Acute Care		10
Hospital	Medical Intensive Care		9
02-Hacettepe	Pediatric Emergency	270	12
University İhsan	Pediatric Infectious Diseases		18
Doğramacı Children's	Pediatric Intensive Care		16
Hospital	General Pediatric Wards		148
03-Gazi University	Adult Emergency	1117	30
Hospital, Adult	Hematology		38
	Hematologic Intensive Care		4
	Unit		
	Medical Intensive Care Unit		12
	Stem Cell Transplant Unit		8
04-Gazi University	Pediatric Emergency		8
Hospital, Children's	Pediatrics Ward		64
	Infectious Diseases		10
	Pediatric Intensive Care		5
05- Ankara Training	Adult Emergency	468	16
and Research Hospital	Acute Care		10
	Intensive Care		34
	Infectious Diseases		22
06- Ankara	Pediatric Infectious Disease	271	28
Hematology Oncology	Unit		
Children's	Emergency Unit		13
Training and Research			
Hospital			
Total number of beds sc	reened	2815	550

Recruitment

Hospital admission registries, charts or available records were screened and *all* patients hospitalized in the previous 24-48 hours or overnight in the predefined wards or emergency room were identified.

J

Admission diagnoses were evaluated and resident patients whose indication for admission was any of a predefined set of conditions, described as possibly associated with a recent influenza infection were eligible for further evaluation. International Classification of Diseases Code version (ICD)-10 was used to report diseases.

A patient was considered as a resident if (s)he has been living in Turkey as a citizen for the last 6 months.

Screening took place on weekdays between 8 am Monday and 5 pm on Friday.

Recruitment

- Diagnoses
- Exclusion & inclusion criteria

Per protocol

If the patient was eligible in terms of admission date and the clinical condition, the patient or the guardian was further interviewed for consent and the inclusion and exclusion criteria and to record other data.

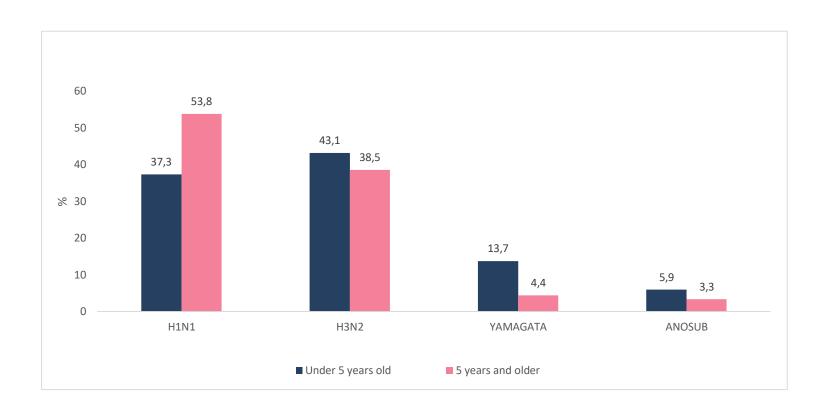
- A nasopharyngeal swab or a pharyngeal swab for adults (14 years of age or older) or a nasal sample for children (less than 14 years old) were obtained from each patient.
- Each swab was tagged using a standardized coding (number of the patient, followed by medical record number and date of swabbing).
- Nasal swabs were collected using Virocult (Medical Wire & Equipment, UK) and the courier of DÜZEN laboratory gathered the swabs from each participating hospital each day. Swabs were sent to the laboratory in 1-3 days.
- Upon arrival in the laboratory, all samples were transferred to cryo-tubes and, if not tested on arrival date, stored in -20 °C freezer.

Laboratory procedures

- EZ1 Virus mini kit V2.0 (Catalog number: 955134, Qiagen, Germany) was used for total nucleic acid extraction. Realtime PCR based, multiplex FTD® Respiratory Pathogens 21 kit (Fast-track diagnostics Ltd. Malta) was used for detection of respiratory pathogens on RotorGene Q platform (Qiagen, Germany).
- For detection of Influenza H1, H3 subtype, Influenza B
 Yamagata and Victoria lineages real- time RT-PCR method
 was performed using a RotorGene Q platform with CDC
 primers and probes according to the CDC protocol.

Number of patients screened and enrolled

	Number of patients (%)			
	5 years and older	Under 5 years	Total	
Screened	883	468	1351	
Exclusion criteria				
Non-resident	3 (0.3)	7 (1.5)	10 (0.7)	
Institutionalized	23 (2.6)	2 (0.4)	25 (1.9)	
Discharged in 30 days	207 (23.4)	59 (12.6)	266 (19.7)	
Unable to communicate	86 (9.7)	10 (2.1)	96 (7.1)	
Language	2 (0.2)	8 (1.7)	10 (0.7)	
Discharged	71 (8.0)	1 (0.2)	72 (5.3)	
No deputy	10 (1.1)	0 (0)	10 (0.7)	
Neurological impairment	3 (0.3)	0 (0)	3 (0.2)	
Others	0 (0)	1 (0.2)	1 (0.1)	
No consent	6 (0.7)	5 (1.1)	11 (0.8)	
Enrollment 1	558	385	943	
Not fulfilling ILI clinical	99 (11.2)		103 (7.6)	
criteria				
Not fulfilling ILI time	60 (6.8)	10 (2.1)	72 (5.3)	
Enrollment 2	399 (45.2)	375 (80.1)	774 (57.3)	


	Number of patients (%)						
	5 years and older	Under 5 years	Total				
Included with valid	399	375	774				
laboratory results							
RT-PCR result							
Influenza negative	308 (77.2)	324 (86.4)	632 (81.6)				
Influenza positive*	91 (22.8)	51 (13.6)	142 (18.4)				
Subtype and	Number of patien	ts (%) within the influe	enza positive cases				
lineage							
A(H1N1) pdm09**	49 (53.8)	19 (37.3)	68 (47.9)				
A(H3N2)	35 (38.5)	22 (43.1)	57 (40.1)				
A not subtyped	3 (3.3)	3 (5.9)	6 (4.2)				
B Yamagata	4 (4.4)	7 (13.7)	11 (7.8)				
B Victoria	0	0	0				
B not subtyped	0	0	0				

RT-PCR, reverse transcriptase-polymerase chain reaction

^{*}p =0.001

^{**} p < 0.001

Percentage distribution of viruses by groups under 5 years old & 5 years and older.

Distribution of virus types in different age segments

Global Influenza Hospital Surveillance Network

Laboratory test results

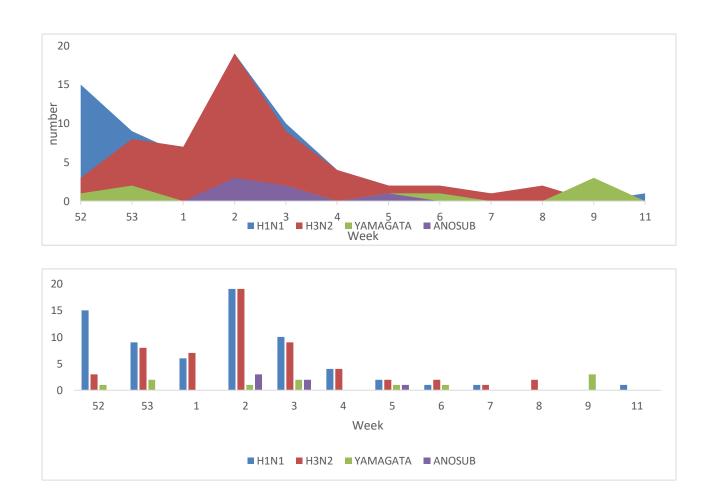


Figure 4. Weekly distribution of number of influenza viruses during the study period.

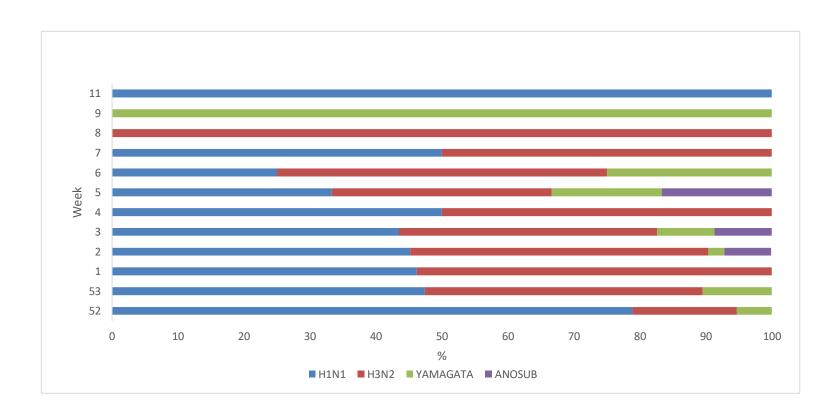
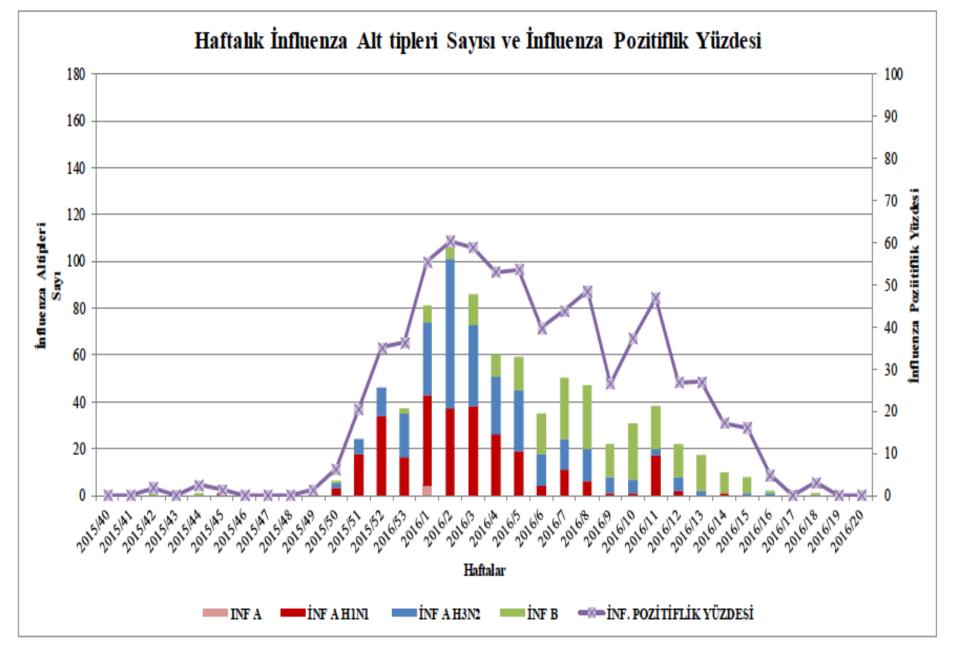



Figure 5. Weekly distribution of viruses during the study period.

Grafik-2: Ülkemizde Sentinel Grip Benzeri Hastalık Sürveyansı kapsamında haftalık tespit edilen İnfluenza alt tipleri sayısı ve İnfluenza pozitiflik yüzdesi.

Turkey; Influenza Surveillance (2015-2016)

		I.S.K. OJİ LAB.	İSTANB	UL ÜNİ.	İSTANBI	JL H.S.L.	ADANA	A H.S.L.	SAMSU	N H.S.L.	ERZURU	M H.S.L.	TOP	LAM
	Sayı	%	Sayı	%	Sayı	%	Sayı	%	Sayı	%	Sayı	%	Sayı	%
Çalışılan Numune	7457		1964		3545		4718		2466		1578		21728	
Toplam Pozitiflik*	2881	38,6	612	31,2	2077	58,6	2509	53,2	1037	42,1	766	48,5	9882	45,5
inf A		14		L	()		5	1	.3	3	4
inf A H1N1	16	646	31	13	98	36	16	38	58	31	34	44	55	08
inf A/H3	7	'92	20)5	70)2	58	32	28	39	25	50	28	20
inf B	4	29	9	3	38	39	28	39	10	51	15	59	15	20
Adenovirus	į	52	3	3	2	7	4	0	2	8	3	3	18	33
Birden fazla etken	1	.04	1	6	2	9	5	2	5	0	7	5	326	
Coronavirüs	1	.54	2	2	4	7	5	0	78		3	9	39	90
Enterovirüs		0	()	2	2	()	()	()	2	2
Hum. Metapneumovirüs	į	56	1	6	2	5	5	6	3	4	19		20	06
Human Bocavirüs	3	30	8	3	2	0	3	3	8	3	(6	10)5
Parainfluenza		76	Ę	5	2	1	2	4	1	8	4	4	13	31
Rhinovirüs	2	266	1	1	1	1	3	4	2	7	6	8	41	L7
RSV	3	322	4	7	9	5	20	03	10)9	5	0	82	26
DİĞER		6		3	()		3	8	3	į	5	2	5
TOPLAM	39	947	74	13	23	37	30	04	13	97	10	65	124	193

Turkey; Influenza Surveillance (2012-2016)

Sezon	Numune Sayısı	influenza A (H1N1)	influenza A (H3N2)	İnfluenza B	Toplam	Pozitiflik Oranı
2012-2013	6.109	951	48	28	1.027	%17
2013-2014	5.329	26	824	219	1.069	%20
2014-2015	10.266	1.012	245	1.406	2.663	%26
2015-2016	21.728	5508	2820	1520	9882	%45,3

Turkey; Influenza Surveillance (2012-2016)

Sezon	İnfluenza A (H1N1)	İnfluenza A (H3N2)	İnfluenza B
2012-2013	%92,5	%4,6	%2,7
2013-2014	%2,5	%77	%20,5
2014-2015	%38,0	%9,2	%52,8
2015-2016*	%55,7	%28,5	%15,4

Patient characteristics, comorbidities and functional status

- 85.7% of the patients 5 years and older had at least one chronic disease condition, the most prevalent one being cardiovascular disease followed by chronic obstructive lung diseases
- The mean Barthel index among women was 64.5± 3.36, while it was 75.5±3.36 among men (p =0.02).

Patient characteristics, comorbidities and functional status

	Number of patients (%)			
	5 years and	Under 5 years	Total	
	older			
	n=399	n=375	n=774	
Gender (female)	196 (49.1)	162 (43.2)		
At least one chronic condition	342 (85.7)	63 (16.8)	405 (52.3)	
Smoking status*	_			
Current smoker	46 (12.6)	163 (43.6)	331 (42.8)	
Ex-smoker	102 (27.9)	20 (5.3)	122 (15.8)	
Never smoked	218 (54.6)	191 (51.1)	409 (52.8)	
Health care utilization	•			
At least one outpatient visit in the last 3 months	310 (77.7)	290 (77.3)	600 (77.5)	
At least one hospitalization in the last 12 months	215 (53.9)	134 (35.7)	349 (45.1)	
Underlying diseases	•	•	•	
Cardiovascular disease	218 (54.6)	17 (4.5)	235 (30.4)	
COPD	103 (25.8)	1 (0.3)	104 (13.4)	
Asthma	50 (12.5)	10 (2.7)	60 (7.8)	
Immunodeficiency/transplant	29 (7.3)	7 (1.9)	36 (4.7)	
DM	93 (23.3)	1 (0.3)	94 (12.1)	
Malignancy	58 (14.5)	4 (1.1)	62 (8.0)	
Renal diseases	56 (14.0)	0	56 (7.2)	
Chronic liver disease	6 (1.5)	3 (0.8)	9 (1.2)	
Rheumatismal disease	19 (4.8)	6 (1.6)	25 (3.2)	
Autoimmune disease	9 (2.3)	3 (0.8)	12 (1.6)	
Neuromuscular disease	50 (12.5)	17 (4.5)	67 (8.7)	
Barthel for ≥ 65 years			-	
Total disability (0–15 points)	22 (11.3)			
Severe disability (20–35 points)	17 (8.8)			
Moderate disability (40–55 points)	15 (7.7)			
Mild disability (60–90 points)	76 (39.2)			
Minimal disability (95–100 points)	64 (33.3)			

5-17 y/o	14.0 %
18-49 y/o	3.4 %
50-64 y/o	20.6 %
> 65 y/o	62.0 %

Vaccination status

	Number of patients (%)					
	5 years and older	5 years and older Under 5 years				
	n=399	n=375	n=774			
Flu vaccine 2015-16	48 (12.0)	8 (2.1)	56 (7.2)			
Flu vaccine 2014-15	68 (17.4)	3 (0.8)	71 (9.2)			
Flu vaccine 2013-14	63 (15.8)	1 (0.3)	64 (8.3)			
Antiviral drug	86 (21.6)	31 (8.3)	117 (15.1)			
prescribed						

Outcome

The mean length of hospital stay (max. 171 days)

12.52±0.89 days among patients 5 years and older

p<0.001

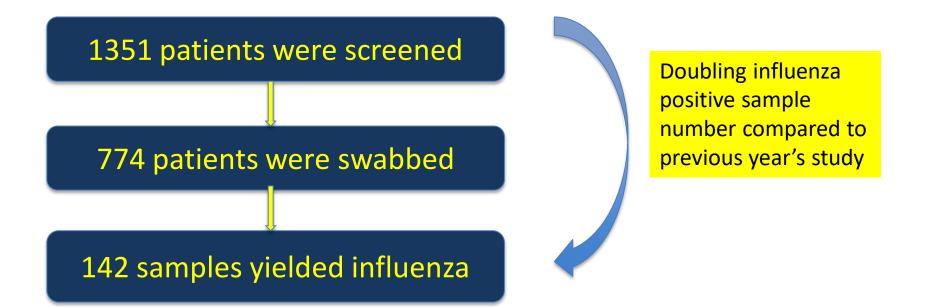
6.77±0.33 days among patients under 5 years

12.99±0.89 days among patients with at least one comorbidity

p<0.001

6.17±0.27 days among patients without any comorbidity

Outcome


	Number of patients (%)				
	5 years and older	Under 5 years	Total		
	n=399	n=375	n=774		
Admission the intensive care unit	130 (32.6)	10 (2.7)	140 (18.1)		
Mechanical ventilation	90 (22.6)	3 (0.8)	93 (12.0)		
Death	59 (14.8)	0	59 (7.6)		

Patients over 65 years of age had:

A higher chronic disease burden, Longer mean length of stay, Higher mortality.

Discussion

Scarcity of influenza B viruses Early ending of the season

Discussion

- The study population was composed of patients with a high chronic disease burden and high utilization of healthcare services.
- Despite the high chronic disease burden only 12% of the patients over 5 years of age was vaccinated in the current season whereas this rate was only 2.1% for those children below 5 years.
- The rate of influenza vaccine was only 15.9% among those patients over 65 years of age.

Discussion

- There was a high mortality rate among patients admitted to the hospital with ILI symptoms.
- The outcomes were worse and length of hospital stay was longer among adults, particularly over
 65 years of age.
- Interestingly, there was no difference between the influenza positive and influenza negative groups with regard to outcome.

- In 2015-16 hospital based influenza surveillance study, an influenza virus was detected in nearly one in five patients screened for ILI and swabbed during the study period.
- The influenza vaccination rate was extremely low.
- The outcomes were particularly worse among those patients over 65 years of age, regardless of the presence of the influenza virus positivity.
- Vaccine effectiveness and the multitude of factors affecting worse outcomes should be analyzed on collated data to yield reliable findings.

For the 2016-2017 season

- Better described resident criterion
- Two swabs per protocol
- Better communication with the lab and closer data management
- Financial burden estimates
- Collated data analysis

Special thanks to...

FISABIO
Sanofi Pasteur
Fondation de France

Investigator	Affiliation
Serhat Unal (PI)	Hacettepe University Faculty of Medicine, Ankara, Turkey
A. Tulay Bagci Bosi	Hacettepe University Faculty of Medicine, Ankara, Turkey
(Epidemiologist)	
Lale Ozisik	Hacettepe University Faculty of Medicine, Ankara, Turkey
Emre Bilgin	Hacettepe University Faculty of Medicine, Ankara, Turkey
Ates Kara	Hacettepe University Faculty of Medicine, Ankara, Turkey
Sevgen Tanir Basaranoglu	Hacettepe University Faculty of Medicine, Ankara, Turkey
Kubra Aykac	Hacettepe University Faculty of Medicine, Ankara, Turkey
Ozlem Guzel Tunccan	Gazi University Faculty of Medicine, Ankara, Turkey
Ozge Ozgen	Gazi University Faculty of Medicine, Ankara, Turkey
Hasan Tezer	Gazi University Faculty of Medicine, Ankara, Turkey
Tugba Bedir Demirdag	Gazi University Faculty of Medicine, Ankara, Turkey
Necla Tulek	Ankara Research and Training Hospital, Ankara, Turkey
Metin Ozsoy	Ankara Research and Training Hospital, Ankara, Turkey
Aslınur Ozkaya-Parlakay	Ankara Hematology Oncology Children's Training and
	Research Hospital, Ankara, Turkey
Belgin Gulhan	Ankara Hematology Oncology Children's Training and
	Research Hospital, Ankara, Turkey
Meral Akcay Ciblak	Sanofi Pasteur, Turkey
Gizem Yılmaz	Assistant
Ayşe Dora	Secretary, TSIM