Fondation Mérieux Conference:
Humanized models to study
immunity and to accelerate the
development of new solutions for
human health

Veyrier-du-Lac, France, April 2017

Genetic engineering of human hematopoiesis and its preclinical modeling in hematochimeric mice

Luigi Naldini, MD, PhD

The Promise of HSC Gene Therapy

- Increasing power of gene transfer technologies
 - Allows: correcting genetic bases of disease
 - instructing novel functions to target cells

- Improved stem cells manipulation & transplant
 - exploits regenerative potential of stem cells

- Make possible to design new therapies
 - for monogenic diseases, cancer & infection

A Seminal Study: ADA-SCID HSC Gene Therapy

A Seminal Study: ADA-SCID HSC Gene Therapy

Early Clinical Testing of HSC Gene Therapy

- Seminal work with γ-Retroviral Vectors in Primary Immunodeficiencies
 - Low gene transfer but efficacy in selected diseases
 - Leukemia triggered by vector insertion in some patients
 - ADA-SCID HSC gene therapy became 1st ex vivo gene therapy drug on the market in 2016

Challenges to Broader Application of HSC Gene Therapy

- Achieve efficient HSC gene transfer
 - Low gene transfer by early γ -retroviral vectors
 - Ex vivo manipulation may affect HSC function
 - Process yield sufficient to allow polyclonal engraftment & rapid multilineage reconstitution
- Regulate transgene expression
 - Unregulated expression may cause toxicity
- Alleviate risk of insertional mutagenesis
 - Random vector integration may occasionally activate oncogenes

More Efficient Vectors Derived from HIV

Nuclear Translocation of Viral Genome

γ-retroviruses

*Mitosis*Dependent

- Infect only dividing cells
- Prolonged ex vivo culture

HIV (Lentivirus) Nuclear Transport Dependent

- Can infect nondividing cells
- Short ex vivo culture

Naldini et al, Science 1996

Human HSC Gene Transfer by Lentiviral Vectors

SCID/NOD mouse

- Hematochimeric Engraftment in SCID mice
 - Long-term reconstitution & secondary transplant
 - polyclonal reconstitution & self-renewal

Vector Integration Site Analysis

Self-Renewal & Multipotency of Transduced SRC

Ailles et al., Mol Ther 2002

Insertional Mutagenesis in HSC Gene Therapy

 Random γ-retroviral vector integration near cancer gene may activate its oncogenic potential

Insertional Mutagenesis in HSC Gene Therapy

 Random γ-retroviral vector integration near cancer gene may activate its oncogenic potential

- Insertional bias for promoter & growth-related genes
- Strong enhancer prormoter in LTR

A Safer Vector Derived from HIV

- Insertional bias for the body of expressed genes
- Transcriptionally inert (self-inactivating, SIN) LTR
- Moderate internal promoter

A Safer Vector: Studies in Tumor Prone Mice

Active LTR vectors

Self-Inactivating LTR vectors

Montini et al., Nature Biotech. 2006; J. Clin. Invest. 2009

Advancing Applications of HSC Gene Therapy

Immuno-hematological diseases

Gene Transfer with Lentiviral Vector

Harvest Hematopoietic Stem Progenitor Cells

Storage diseases

LV HSC Gene Therapy Trials at Tiget

- Wiskott Aldrich Syndrome
 - PID with platelets deficiency, eczema & autoimmunity
 - Allogeneic HSC curative but high morbidity if mismatched
 - γ-RV HSC gene therapy efficacious but most patients later developed leukemia

- Metachromatic Leukodystrophy (MLD)
 - Storage disease (ARSA) affecting CNS & PNS
 - Dysmyelination and neurodegeneration
 - No treatment available

Myeloid Gene Marking in WAS and MLD Patients

Months after GT

WAS

- WAS10_01
- ► WAS10_02
- **○** WAS10_03
- WAS10_04
- **○** WAS10_06
- WAS10_07
- WAS10_08WAS10_09

MLD

- MLD01
- MLD02
- MLD03
- **-** MLD04
- **─** MLD05
- MLD06
- MLD07
- MLD08
- **△** MLD09

Multi-Lineage Gene Marking

Genome-wide Analysis of LV IS in Patients

- Highly polyclonal stable reconstitution
- No dominant or expanding clones
- No selection for insertions at cancer genes
- Confirms prediction of improved safety from pre-clinical models
- → No evidence of genotoxicity

Short vs. Long-Term Contribution to Hematopoiesis

Zonari & Gentner, Stem Cell Reports 2017

Shared IS among CD34 and other lineages WAS Pt1 20. Pt3 Months 0102 **|30|** 36 Percentage of IS sharing after GT 36 12 24 CD34 01M **CD34 01M CD34 06M CD34 02M CD34 03M CD34 12M CD34 12M CD34 24M CD34 24M CD34 36M** CD34 36M Pt2 Pt4 **Months** after GT **CD34 01M** CD34 01M **CD34 03M** CD34 02M CD34 05M CD34 03M CD34 05.5N CD34 09M **CD34 06M CD34 12M CD34 24M** CD34 36M

Clonal Tracking of Hematopoiesis in Humans

- Early post-transplant reconstitution mostly driven by short-lasting progenitors
- Followed by stable multi-lineage output from long-lasting HSC

- LV transduced HSC robustly engraft
- LV provide the means to safely engineer human hematopoiesis to near completion

HSC Gene Therapy of WAS: Summary

- Persistent clinical benefit and safety
 - 8 patients: all alive FU 0.8-6 years
 - Improvement in immune function, platelet number
 - Reduced bleeding, eczema, infection, autoimmunity
 - Benefit comparable to successful allogenic HSC

Rationale for HSC Gene Therapy of MLD

SNO

Cross-correction of resident cells

Biffi et al., J. Clin Inv. 2004 and J. Clin Inv. 2006; Capotondo et al., PNAS 2012

ARSA Activity Reconstitution in MLD Patients

Late Infantile MLD: Disease Evolution

GMFM scale: evaluation of motor skills

Clinical Benefit of HSC Gene Therapy

GMFM scale: evaluation of motor skills

Neuropsychological Evaluation

Bayley scale for infant development

HSC Gene Therapy of MLD: Summary

- Well tolerated and safe (current follow-up)
- Reconstitution of ARSA activity in hematopoietic cells and CNS (CSF)
- No Disease Onset or Progression
 - In pts treated as pre- or early symptomatic

Contributors: MLD & WAS Clinical Trials

MLD WAS, CRU & UTMO

Alessandra Biffi, Maria Sessa Alessandro Aiuti

L. Lorioli, F. Fuma

S. Acquati, D Red

S. Canale, M. Ces

T. Plati, M. Gabalo

A Rovelli, Monza

Integration Stud

Eugenio Montini,

F. Benedicenti, Lu

DKFZ, Heidelberg C. von Kalle, M. S

Univ. Perugia S. Martino, F. Mor

Current Clinical Testing of HSC Gene Therapy

- Seminal work with γ-RV in PID
 - ADA-SCID 1st ex vivo gene therapy product on the market
- Expanded applications using Lentiviral Vectors
 - Stable high-level polyclonal reconstitution with transduced cells (up to 9yr follow-up)
 - No evidence of genotoxicity to date
 - Persistent clear clinical benefit in most treated patients
- SR-Tiget trials: MLD, WAS, β-thalassemia
 - 24, 9, 7 pts; up to 6 yr follow-up; up to 80% stable marking
- Similar findings in multiple trials and sites

Aiuti et al., Science, 2013; Biffi* Montini* et al, Science 2013 Biasco et al, Cell Stem Cell, 2016; Sessa et al., Lancet, 2016

A Future Outlook for HSC Gene Therapy

- Autologous HSC GT may become preferred to allogeneic HSC transplant in several diseases
 - mixed chimerism sufficient for full benefit
- With further improvements
 - faster hematopoietic reconstitution (better preserve progenitors)
 - increased HSC input (improved harvest, decreased manipulation, ex vivo HSC expansion)
 - milder conditioning regimens (non mutagenic)
- With more precise genetic engineering

Targeted Gene Editing

 Edit DNA sequence to correct mutations

A. Lombardo

Exploiting Artificial Nucleases (ANs) for Targeted Genome *Editing*

Therapeutic Potential of Targeted Gene Editing in HSC Gene Therapy

- in situ gene correction vs. gene replacement
 - restores gene function and expression control
 - -may abrogate risk of genome-wide insertional mutagenesis
 - genotoxic risk limited to off target activity
 - circumscribed to small fraction of genome
 - challenging to comprehensively define
 - –hit-and-run nature & low sensitivity
 - potential for bi-allelic hits

Delivering the Gene Editing Machinery

mRNA, RNP Integrase Defective LentiVector (IDLV) Adenoviral 5/35 Artificial Nucleases (ZFNs, TALENs, CRISPR/Cas9)

ZFN L ANs Target Site **GFP** Homology Driven Repair

IDLV, AAV6, plasmid DNA or oligo with target site homologies as donor template for HDR

Targeted Gene Editing of Human HSPC

PCR on CFU

■ Unknown

HDR

HDR + NHEJ

- Efficient disruption (NHEJ) vs. insertion by HDR
- HDR constrained in more primitive cells
- High specificity of integration
- Long-term multi-lineage engraftment of edited HSPC

B cells Myeloid T cells

Genovese et al., Nature 2014

Therapeutic Potential of Targeted Gene Editing in HSC Gene Therapy

- HDR-mediated editing constrained in HSC
 - quiescence, apoptosis, limited DNA repair
 - low yield of edited HSPC may impact safety
- Rationale for first clinical testing
 - Primary immunodeficiencies such as IL2RG, RAG1/2, CD40L, BTK deficiency
 - unregulated expression may pose risk of transformation or malfunction
 - selective advantage of gene corrected cells may compensate low editing efficiency

Correction of SCID-X1 Causing Mutations

10³

-10²10¹

GFP

2%

10³

10²

Functional T Cells from IL2RG Edited HSC

Human T cells

ex vivo T-cell growth

Gene Correction of SCID-X1

- Normal output & function of T-cell progeny from edited HSPC
 - Molecular evidence of correction of progenitors from patients

- Selective advantage may provide therapeutic benefit even from few edited HSPC
 - Can we model therapy in mice to instruct clinical trial design?

Summary: Modeling SCID-X1 Gene Correction

- Low fraction of wild-type HSPC correct disease
- Edited progenitors in murine cell product
 - rescue lymphoid compartments
 - T cells persist and can mount immune response
- Safety concerns on low input of corrected cells
 - Suboptimal immune reconstitution w/out conditioning
 - Potential for replicative stress oncogenesis
 - Conditioning and engraftment of up to 10% corrected HSC is protective and fully rescues the disease phenotype

Conclusion: SCID-X1 Gene Correction

- Required threshold level of edited HSPC to fully rescue disease phenotype in mice (10%)
 - within reach of optimized protocols using clinically relevant human HSC sources and scale
- Partial myeloablative conditioning advisable to
 - allow engraftment of edited HSC
 - protect from replicative stress (and transformation risk?) of corrected thymic lymphoid progenitors
- Rationale for clinical translation established

Conclusions: Cell and Gene Therapy

- Novel pharmacology
 - Gene-based delivery of biotherapeutics
 - by gene transfer or editing
 - stable, regulated, targeted
- Exploits powerful biological processes
 - Information transfer by genome & epigenome
 - Regenerative potential of stem cells
 - Homing & trafficking by body cells as smart agents
- Clinical evidence of clear benefit (cure) for
 - some monogenic diseases,
 - potential for treating cancer and infections

Cell & Gene Therapy: the Challenges Ahead

Safety

- "Live" biological drugs: unprecedented complexity long-term effects, germline & environment
- Limited understanding of stem cells biology
- Bedside delivery
 - Need for multidisciplinary expertise and
 - new biological readouts of therapy
- Society
 - Personalized medicine:
 - manufacturing, quality standards
 - marketing pipeline, cost and sustainability

Sponsors & Contributors

Giulia Escobar Luigi Barbarossa Pietro Genovese San Raffaele Institute Eugenio Montini, A. Calabria Chiara Bonini, E. Provasi

