HIV Epidemic in Asia

Implications for HIV vaccine efficacy trials

VACCINOLOGY 2017
III International Symposium for Asia Pacific Experts
Hanoi, Vietnam, October 16, 2017

Dr. Jean-Louis Excler
Head of Clinical Development and Regulatory
Outlines

- HIV prevention and HIV vaccines
- RV144 next steps
- HIV epidemiological data in Asia
- HIV vaccines for Asia
- Asia country-specific data in MSM
- Conclusions
Toward Ending the HIV/AIDS Pandemic

Non-vaccine prevention modalities + An effective HIV vaccine → AIDS-Free Generation
What have learned?

- **Proven methods of partially effective prevention**
 - Medical male circumcision
 - Pre-exposure prophylaxis (PrEP)
 - Treatment as Prevention

- **HIV therapy is amazingly effective**
 - Adherence is essential
 - All HIV positive people should be offered therapy as soon as diagnosed

- **New advances in prevention and treatment are needed to help end the epidemic**

- **To make further progress we must integrate biomedical with behavioral and social science research**
Promise and pitfalls of PrEP

- PrEP, as defined as a daily pill containing FTC/TDF, is the U.S. FDA approved biomedical prevention modality PrEP

- PrEP is amazingly effective, IF the PrEP user adheres

- PrEP is not a magic bullet, must be delivered in the context of comprehensive prevention packages

- Need to address the access and adherence issues

- Next generation of PrEP agents beginning evaluation
 - Injectable (may circumvent issues linked to adherence)
 - Long-acting, easier to use, safer, more accessible due to lower cost
Towards an HIV Vaccine

Empirical or Inductive Approach:
Test promising candidates until protection achieved, identify correlates and optimize regimen

Theoretical or Deductive Approach:
Determine optimal immune correlate of protection, design immunogen to induce immune correlate

Effective Vaccine

Effective Vaccine
HIV-1 Vaccine Efficacy Trials

<table>
<thead>
<tr>
<th>Vaccine regimen</th>
<th>Location/risk population</th>
<th>Overall vaccine efficacy</th>
<th>Increased risk of infection</th>
<th>Immune correlates of decreased vaccine efficacy</th>
<th>Immune correlates of decreased HIV risk</th>
<th>Immune correlates of immune control post infection</th>
<th>Virus sieve</th>
<th>Host genetic correlates</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAX003 (Phase III Protein/Alum [CRF01, AE/Claude B Env])</td>
<td>Thailand/injection drug users</td>
<td>No efficacy</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>n/d</td>
</tr>
<tr>
<td>VAX004 (Phase III Protein/Alum [Claude B Env])</td>
<td>USA/MSM/high risk women</td>
<td>No efficacy</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes ADCVI, CD4 Blocking, Tier 1 NAb</td>
<td>No</td>
<td>n/d</td>
</tr>
<tr>
<td>STEP HVTN502 (Phase IIIb Ad5 Vector [Claude B Gag/Pol Nef])</td>
<td>North/South America, Australia, Caribbean/MSM and High Risk Heterosexual Men and Women</td>
<td>No efficacy</td>
<td>Yes</td>
<td>n/d</td>
<td>No</td>
<td>Yes T cell breadth/magnitude, Lower VL</td>
<td>Yes</td>
<td>Yes Fcy receptor IIIa genotype (VV genotype)</td>
</tr>
<tr>
<td>Phambili HVTN503 (Phase IIIb Ad5 Vector [Claude B Gag/Pol Nef])</td>
<td>South Africa/Heterosexual Men and Women</td>
<td>No efficacy</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>RV144 (Phase III) ALVAC vector [Claude B Gag/Pro + CRF01, A/E Env + Protein/Alum [CRF01, AE/B Env])</td>
<td>Thailand/Community</td>
<td>31% efficacy</td>
<td>No</td>
<td>Yes Plasma Env IgA</td>
<td>Yes V1V2 lgG, Linear V2, V1V2 lgG3, Interactions (ADCC, Avidity, Tier 1 NAb, IgA), CD4 T cell Polyfunction, Cytolines</td>
<td>Yes</td>
<td>Yes HLA A02 allele, FcγRIIC -118 L allele, DQB106</td>
<td></td>
</tr>
<tr>
<td>HVTN505 (Phase Ib) DNA/Ad5 (Claude A, B, C Env, Claude B Gag/Pol)</td>
<td>USA/MSM and TG, Ad5 seronegative, Circumcised</td>
<td>No efficacy*</td>
<td>No</td>
<td>No</td>
<td>Yes CDB Env T-cell Polyfunction</td>
<td>n/d</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Tomaras, Plotkin Immunological Reviews 2017, 275:245-261
Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand

S Rerks-Ngarm, JH Kim, NL Michael, et al. for the MOPH–TAVEG Investigators
RV144 Vaccination and Follow-up Schedule

- **HIV test, risk assessment and counseling** at week 0, 4, 12, 24
- **ALVAC®-HIV (vCP1521) priming** at week 0, 4, 12, 24
- **AIDSVAX® B/E gp120 boosting** at week 12, 24

6-month vaccination schedule

3 years of follow-up (every 6 mo.)
RV144
Acquisition Endpoint: Modified Intent-to-Treat (mITT)

Vaccine infections: 51
Placebo infections: 74
p = 0.04
Efficacy: 31.2%
95% CI (OBF): 1.1, 51.2
Thai Phase III HIV Vaccine Trial (RV144) Summary

Early (VE = 60%) effect wanes (Robb et al, Lancet ID 2012)

bAb decreases rapidly

Reciprocal GMT (Range)

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Reciprocal GMT (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 weeks</td>
</tr>
<tr>
<td>B gp120</td>
<td>31207 (800-204800) (99% responders)</td>
</tr>
<tr>
<td>E gp120</td>
<td>14558 (200-204800) (99% responders)</td>
</tr>
<tr>
<td>B p24</td>
<td>205 (100-1600) (52% responders)</td>
</tr>
</tbody>
</table>

P<0.0001 compared to placebo group - all Antigens
*: P<0.001 compared to 2 week time-point

Dr. Mark de Souza
Immune Correlates Analysis from RV144

- IgG antibodies against the V1V2 region of the HIV-1 envelope protein associated with reduced infection
- Non-neutralizing antibodies mediate ADCC activity
- IgA antibodies correlated with increased infection

Immune Correlates of HIV Risk in RV144

V2 Correlate
V1V2 IgG, V1V2 IgG Breadth, V2 Linear AE hotspot
V1V2 IgG3
Structure Function of V2 Mabs and Sieve Analysis

T Cell Correlate
Cytokine response (IL-10, IL-13) from Env stimulated PBMC
Polynuclear CD4+ T cell (CD40L, IL-2, IL-4, IFN-γ and TNF-α) and (CD40L, IL-2 and IL-4)
(Haynes et al. NEJM 2012; Lin et al. Nature Biotechnology 2015)

Host Genetics and Antibodies
IgG, IgG3, nAb, Avidity and FcyRIIC SNP
IgA/ HLA A*02 allele
IgA/ HLA II DQB1*06
IgG/ HLA II DPB1*13
(Li et al. JCI 2014; Garland et al. JV 2014; Prentice et al. Sci. Trans. Med. 2015)

IgA Correlate
IgA Env Score
IgA A. OOMSA gp140 CF
IgA A1 Congp140
IgA C1
IgA Non-Vaccine Strains
IgA/IgG ratio
(Haynes et al. NEJM 2012; Tomaras, Ferrari et al. PNAS 2013)

Virology (Sieve)
V2 Sieve (and V2 mAbs dependent on 169K)
Genetic distance from Vaccine strain /IgG and IgG3 V1V2 correlates

Antibody Interactions
Low IgA/ ADCC (Blocking ADCC)
Low IgA/ nAb
Low IgA/ IgG Env Avidity
Anti-C1/V2 Synergy
IgG3/ ADCC
IgG3/IgG1

Host Genetics

Virology (Sieve)

Immune Responses

Cellular Specificity

Cell Subset

Cell Function

time

Ab Form

Ab Function

Ab Specificity

Virus Sieve Analysis

Kim, Excler, Michael Annu Rev Med 2015
Tomaras, Plotkin Immunological Reviews 2017, 275:245-261
Strategies to amplify RV144 responses

MORE, BETTER, LONGER

- Strength
- Breadth
- Durability

HOW

- New proteins
- Potent adjuvants
- Additional boosts
- Longer intervals
- New vectors
Post RV144 Steps – Learn more, improve

- RV305 – late boost of RV144 vaccine recipients
- RV305a – Additional boosts
- RV306 – RV144 regimen with boosts at different intervals
- RV306a – Additional boosts with different proteins
- RV328 – AIDSVAX BE only
- RV509 – RV144 regimen with new proteins and additional boosts
• The RV144 regimen tested in South Africa showed same safety and immunogenicity patterns (HVTN 100)

• A similar prime-boost regimen using ALVAC-HIV and gp120 subtype C formulated with MF59 (HVTN 107)
 o South Africa
 o Lower V1V2 antibody response than in RV144
 o Limited cross-reaction with other HIV-1 subtypes

• The subtype C regimen has now entered a Phase IIb trial (HVTN 702) in South Africa in heterosexual populations. However, a fraction of this population appears to also practice anal intercourse, a possible confounding factor for efficacy.
Africa

- Mostly **heterosexual** transmission
- Unveiled and expanding MSM transmission
- **Mother-to-child transmission**

Asia

- Heterosexual
- Mostly **MSM**, expanding
- IDU, decreasing
Public Health Impact and Regional Relevance

Precedent for vaccine efficacy

Focus on regional public health impact

Future amplification of global reach

THAILAND
High-risk MSM

Mutually reinforcing studies strengthen and support public health benefit in target populations and the translation of the platform globally.

RV144

Southern Africa
High-risk Heterosexual

US/EUROPE

SOUTHEAST ASIA

SOUTHERN AFRICA
The initial follow-up clinical development strategy with the RV144 regimen was to conduct a Phase IIb in men having sex with men (MSM) in Thailand. However, this strategy was hampered by the lack of agreement between pharma companies regarding manufacturing of AIDSVAX B/E and the failure to identify a suitable industrial partner.

Clinical trial data suggest that gp120 A244 Δ11 (CRF01_AE component of AIDSVAX B/E) has special characteristics unmatched by other envelope proteins.

This triggered a renewed interest of donors and Sanofi Pasteur in conducting a Phase IIb trial in MSM in Asia where HIV incidence remains high in several countries.
Clinical development pathway

- **RV509 bridging study**
 - US
 - Germany
 - Thailand

- **Efficacy trials**
 - B subtype: US and Europe
 - **AE: Asia**
GENERAL HIV EPIDEMIOLOGICAL PATTERNS IN ASIA
HIV and AIDS in Asia and the Pacific 2015

Asia & The Pacific (2015)

- 5.1 million people living with HIV
- 0.2% adult HIV prevalence
- 300,000 new HIV infections
- 180,000 AIDS-related deaths
- 64% know their status
- 41% adults on antiretroviral treatment
- 34% virally suppressed

• In 2014, the Asia-Pacific region was home to more than a half of the world’s population and 15.2% of the estimated 36.9 million people living with HIV globally. Most of the region’s HIV-positive people (~90%) live in five countries - **China, India, Indonesia, Thailand and Vietnam**.

• Globally, HIV incidence decreased by 35% since 2000 and AIDS-related deaths dropped by 42% since 2004. New HIV infections declined in some countries in the region (India, Myanmar, Thailand, Cambodia, and Viet Nam) but increased in others (Pakistan, Philippines, and Indonesia).
The majority of estimated new HIV infections (on the left) and people living with HIV (on the right) are in India, China, Indonesia, Thailand and Viet Nam/ Myanmar. HIV is concentrated among key populations: MSM, TGW, FSW and PWID.
New HIV infections in key affected populations

DISTRIBUTION OF NEW HIV INFECTIONS AMONG POPULATION GROUPS BY REGION

2014

Source: UNAIDS special analysis, 2016

Asia and Pacific

- Sex workers: 5%
- People who inject drugs: 13%
- Gay men and other men who have sex with men: 18%
- Transgender people: 2%
- Clients of sex workers and other sexual partners of key populations: 24%
- Rest of population: 38%
Epidemics in the region can be characterised as being concentrated and growing in key populations, mainly among MSM, particularly young MSM, or shifting towards MSM as the main mode of transmission.

HIV prevalence is 5-15 times higher among MSM compared to the general population in South and South-East Asia. Infections among female sex workers (FSW) have slowed but remain important contributors to HIV transmission in the region.

Limited data are available about the HIV epidemics in transgender people (TG), estimated to be 9–9.5 million in the region, and small-scale research is mostly limited to TG women who have sex with men. In several cities HIV prevalence in this group was substantially higher than in general population of reproductive age, and even higher than in MSM.
Transgender people in selected cities in Asia and Pacific

Figure 2: HIV prevalence among transgender people in select cities in Asia and the Pacific, 2009–2012

Source: HIV and AIDS Data Hub for Asia Pacific (www.aidsdatahub.org), based on integrated bio-behavioural surveys reported in global AIDS response progress reports from 2012.
While disproportionately affected by HIV, the key risk populations are mostly underserved by HIV prevention programs.

Throughout Asia, less than 60% of MSM and FSW know where to get tested for HIV or have received condoms through distribution programs (level of condom use > 80% is considered to have an impact on HIV epidemic). Condom promotion programs are not reaching men at a sufficiently high level: rates of condom use at last sex among MSM are half of the rate in FSW (two thirds among male sex workers (MSW)).

Studies in MSM have provided evidence of the safety and efficacy of daily tenofovir, alone or in combination with emtricitabine for HIV pre-exposure prophylaxis (PrEP). No studies were conducted to evaluate PrEP efficacy specifically in TG people, but TG participants of the iPrEx trial were protected from HIV if they had taken PrEP.
• No evidence for efficacy of treatment for prevention (TFP) in protecting MSM from HIV infection was found.
• The rationale for this approach is based on assumptions about biological plausibility and external validity of latency-based efficacy found in heterosexual couples. This is different from the route and timing of HIV transmission in MSM.
• New HIV infections in MSM principally occur in chains of acutely HIV-infected highly sexually active young men, in whom acquisition and transmission are correlated in space and time. By the time TFP renders its effects, most new HIV infections in MSM will have already occurred.
• Generally, HIV cascade data in MSM show a sobering picture of TFP in engaging and retaining MSM along the continuum.
• Widening the cascade with a preventive extension, including PrEP, the first proven efficacious and only biomedical HIV prevention strategy in MSM, will be instrumental in achieving HIV epidemic control in this group.

HIV-1 molecular epidemiology patterns

- CRF01_AE remains predominant in South East Asia with a growing presence in China and an increasing number of recombinant forms containing CRF01_AE, B and C subtypes. **CRF01_AE dominates** in Thailand, Cambodia, Indonesia, Laos, Myanmar, and Viet Nam.

- In Malaysia, co-circulation of CRF01_AE and subtype B has resulted in the emergence of CRF33_01B in approximately 20% of HIV-1 infected individuals, now also described in Indonesia.

- Co-circulation of CRF01_AE and subtype B in the Philippines
 - Phanuphak et al. ARHR 2015

Phanuphak et al.
ARHR 2015

<table>
<thead>
<tr>
<th>Subtype Color Legend</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Subtypes & Recombinants</td>
<td>Subjects</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>BD Bangladesh 205 9</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>CN China 3712 4260</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>HK Hong Kong 72 222</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>ID Indonesia 462 55</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>IN India 1344 1744</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>JP Japan 2339 5410</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>KH Cambodia 415 524</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>KR South Korea 955 95</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>MM Myanmar 5 83</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>MN Mongolia 3 3</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>MO Mozambique 17 0</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>MY Malaysia 240 500</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>NP Nepal 0 97</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>PH Philippines 96 326</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>PK Pakistan 219 130</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>SG Singapore 161 237</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>TH Thailand 2103 1020</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>TW Taiwan 622 615</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>VN Vietnam 684 2100</td>
</tr>
<tr>
<td>A1: C1, F1, G, H, D, A2, C2, B, C, B1, A</td>
<td>ASIA Total 13708 15501</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>Bangladesh</td>
<td>205</td>
<td>9</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>3712</td>
<td>4260</td>
</tr>
<tr>
<td>HK</td>
<td>Hong Kong</td>
<td>72</td>
<td>222</td>
</tr>
<tr>
<td>ID</td>
<td>Indonesia</td>
<td>462</td>
<td>55</td>
</tr>
<tr>
<td>IN</td>
<td>India</td>
<td>1344</td>
<td>1744</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>2339</td>
<td>5410</td>
</tr>
<tr>
<td>KH</td>
<td>Cambodia</td>
<td>415</td>
<td>524</td>
</tr>
<tr>
<td>KR</td>
<td>South Korea</td>
<td>955</td>
<td>95</td>
</tr>
<tr>
<td>MM</td>
<td>Myanmar</td>
<td>5</td>
<td>83</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MO</td>
<td>Mozambique</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>MY</td>
<td>Malaysia</td>
<td>240</td>
<td>500</td>
</tr>
<tr>
<td>NP</td>
<td>Nepal</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>PH</td>
<td>Philippines</td>
<td>96</td>
<td>326</td>
</tr>
<tr>
<td>PK</td>
<td>Pakistan</td>
<td>219</td>
<td>130</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
<td>161</td>
<td>237</td>
</tr>
<tr>
<td>TH</td>
<td>Thailand</td>
<td>2103</td>
<td>1020</td>
</tr>
<tr>
<td>TW</td>
<td>Taiwan</td>
<td>622</td>
<td>615</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td>684</td>
<td>2100</td>
</tr>
<tr>
<td>ASIA</td>
<td>Total</td>
<td>13708</td>
<td>15501</td>
</tr>
</tbody>
</table>
THAILAND
“Explosive HIV epidemic” among MSM in Bangkok

MSM=men who have sex with men

Projection of new HIV infections in Thailand 2015-2019

THAILAND

Projected new HIV infections by mode of transmission 2015-2019

- Injecting drug use: 12%
- Heterosexual sex (unmarried couples): 4%
- Sex between men: 24%
- Heterosexual sex (married couples): 10%
- Sex between female sex workers and clients: 50%

Source: Thailand National AIDS Committee (2014)
Increasing proportion of new HIV infections in Thailand from MSM over time

Estimated proportion of annual new HIV infections in MSM, from male-to-male sex and FSW and clients, Bangkok, 1985-2020

Source: Projections of HIV/AIDS in the Bangkok Metropolitan Administration area, 2014
HIV prevalence in MSM, IBBS, Bangkok, 2003-2014

HIV prevalence (%)

Calendar year

Source: IBBS, Bureau of Epidemiology, MOPH and AIDS Control Division, BMA, 2015
HIV prevalence in MSM, IBBS, Bangkok, 2003-2014 by age group

- 15-22
- 23-29
- 30 years and up

HIV prevalence (%) by age group and calendar year:

- 2003: 18.0%
- 2005: 22.3%
- 2007: 22.2%
- 2009: 10.5%
- 2010: 12.5%
- 2012: 24.5%
- 2014: 23.5%

Age groups:
- 15-22
- 23-29
- 30 years and up

Calendar year:
- 2003
- 2005
- 2007
- 2009
- 2010
- 2012
- 2014
HIV incidence among MSM in Thailand

- In a recent cohort study conducted in Pattaya, HIV incidence was **8.2 and 4.28 per 100 PY** among MSM and TGW sex workers, respectively.
- An ongoing ‘Test and Treat’ cohort among MSM and TGW in Bangkok, Ubon Ratchathani, Lampang and Mahasarakam found a preliminary HIV incidence of **6.12-7.05/100 PY** between November 2012 and September 2014 (Nittaya Phanuphak, unpublished data).

Conclusions for HIV epidemic in MSM in Thailand

- Ongoing and expanding HIV epidemics in MSM
- HIV incidence highest in youngest MSM
- Aging of the MSM population, with HIV prevalence levels similar to San Francisco situation in the beginning of the 80’s
- HIV viral and behavioral dynamics create an epidemic force that cannot be countered
- Treatment as prevention: the jury is still out; if we can’t treat them, we may have no other option than to prevent them.
VIETNAM
Key population size estimates, 2013

<table>
<thead>
<tr>
<th>Populations</th>
<th>Estimate</th>
<th>Year of estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>People who inject drugs</td>
<td>271,506</td>
<td>2013</td>
</tr>
<tr>
<td>Female sex workers</td>
<td>71,936</td>
<td>2013</td>
</tr>
<tr>
<td>Men who have sex with men</td>
<td>382,506</td>
<td>2013</td>
</tr>
</tbody>
</table>

Estimated HIV prevalence in MSM - Vietnam 1990-2020

Fig. 7: Estimated HIV prevalence among MSM in Viet Nam, 1990–2020: national prevalence

HIV prevalence (%)

Source: Asian Epidemic Model, baseline scenario, VAAC, 2014

Joint Review of the Health Sector Response to HIV in Viet Nam 2014, WHO WPRO
HIV prevalence among MSM by city/province, 2015

• Currently estimated overall HIV prevalence 8.2% (2016) (aidsdatahub.org)

• The national HIV program shifted attention to the risks of acquiring HIV among MSM after results from the IBBS showed a significant rise in HIV prevalence between 2006 and 2009 in Hanoi and Ho Chi Minh City, and epidemic modeling estimated a rapid increase in national HIV prevalence among high-risk MSM. MSM were included in sentinel surveillance only in 2011.
The population of MSM in HCMC was estimated to be 37,238, which is 1.35% of the male population.

- Safarnejad J Urban Health 2017

The overall HIV prevalence trend among MSM in HCMC increased between 2005 and 2013.

- In 2013, 12% of MSM in HCMC were infected with HIV, and estimated to 14.2% in 2014.
 - Joint Review of the Health Sector Response to HIV in Viet Nam 2014, WHO WPRO

Overall MSM population not clearly known in Hanoi (likely in the range of 10,000).

- HIV prevalence in Hanoi was 6.4% (late 2014).
 - Vu Front. Public Health 2016
 - Nguyen AIDS Behav 2016

- No HIV incidence data available in MSM in Vietnam
PHILIPPINES
Majority of new HIV infections are among MSM 2015, Philippines

Cumulative reported number of newly diagnosed HIV infections in youth (15 - 24 years), 1984-2016\(^1\), the Philippines, by transmission category \(^1\)up to and including June 2016

- Heterosexual: n=1152, 12.7%
- Homo & bisexual: n=7770, 82.4%
- PWID: n=410, 4.9%
- Homosexual: n=4887, 62.8%
- Bisexual: n=2883, 37.8%

Total=9,332 cases

Source: Department of Health, Manila, the Philippines, 2016
Cumulative number of reported newly diagnosed HIV infections in men who have sex with men, the Philippines, 1985-2015

Number of new cases

Source: Department of Health, Manila, the Philippines, 2016

As of June 2016: 26347
HIV prevalence among MSM in selected surveillance sites, the Philippines, 2015 (7 highest out of 35 sites)

Source: Department of Health, Manila, the Philippines, 2016
HIV incidence among MSM and transgender re-testers at Clinic in Manila (2012-2015)

6 per 100 person years

9 per 100 person years among ≤ 21 year old

3 per 100 person years among > 21 year old

Source: Clinic Anglo
PEOPLE’S REPUBLIC OF CHINA
Total number of reported persons living with HIV by province, China, 2014

[Map showing the distribution of HIV cases by province in China with different color intensities indicating the number of reported cases.]
Size estimates of MSM as proportion of adult male population (15-49) years

Regional median 1.5%; Range 0.12% - 4.36%

China: 7.5 mil MSM, Range 600K – 21.8 mil

1.37 bil people; 500 mil adult men

Source: Prepared by www.aidsdatahub.org based on size estimates of MSM (please see the information provided in the previous 2 slides) and the data on adult male population (15-49) years is based on annual population based on UN Population Division. (2015). World Population Prospects: The 2015 Revision - Extended Dataset.
HIV prevalence among 8 populations in China’s HIV Sentinel Surveillance Surveys (2000-2014)

China UNAIDS HIV Annual Report 2014
Estimating HIV incidence in China

- MSM population had the highest incidence estimates at 0.74% in 2011, 0.59% in 2012, 0.57% in 2013 and 0.53% in 2014.

 Cui Y et al. JIAS 2016, 19:20609

Beijing cohort study 2009-2010 HIV incidence (n=962): 3.90 100 PY (95%CI = 2.37, 5.43).

Among 4496 eligible MSM recruited in **2012-2013**. The majority was aged ≤ 35 years (77.5 %), migrants (60.3 %), never married (69.8 %), and played receptive role in anal sex (70.5 %).

- The HIV prevalence was 9.9 %, and 41.9 % were recently infected.
- Sensitivity/specificity adjusted **HIV incidence of 8.9/100 PY**.
- Recent HIV infection was associated with having multiple male, recreational drug use, anal bleeding, syphilis and history HSV-2 infection.

 * Xu et al. Infectious Diseases of Poverty (2016) 5:82*
Estimated HIV subtype distribution
MSM vs non-MSM in China

Adapted by David Chang, Sodsai Tovanabutra, Gustavi Kijak, Jean-Louis Excler, Jerome Kim, MHRP
CONCLUSIONS 1

• Considerable progress has been achieved in reducing the HIV/AIDS epidemic in Asia over the past decade

• More remains to be done in particular in key populations such as MSM and TGW where the highest prevalence and incidence are found

• Combination of behavioral and biomedical prevention modalities is the only way to go.
CONCLUSIONS 2

• RV144 pave the way to new efficacy trials in both Africa and Asia

• Improvements of the RV144 regimen are ongoing in Thailand

• Unique opportunity to test a vaccine among mostly CRF01_AE infected MSM and TGW populations
CONCLUSIONS 1

• Continue focusing efforts in Thailand:
 ✓ Possible challenges:
 o Aging MSM population
 o WHO consolidated guidelines on HIV testing, treatment and prevention call for an expanded access to PrEP worldwide and have provided guidance on PrEP implementation in the region
 o Several PrEP studies on going (PrEP-30 Project (Thai Red Cross AIDS Research Centre) and Princess Soamsawali PrEP Project) and scaled up intervention planned
 o PrEP will likely needed to be implemented in the context of HIV vaccine efficacy trials
 o HIV incidence may decline as a consequence and compromise the feasibility of an efficacy trial (insufficient endpoints)

Invest efforts and funds in other Asian countries
 ✓ Focusing on Thailand only may be risky and compromise the feasibility of an HIV vaccine efficacy trial (insufficient endpoints)
 ✓ May allow to conduct multi-country and multi-site efficacy trials
 ✓ More funds and manpower will be needed to implement this strategy
Acknowledgements

Fondation Merieux, France

Dang Duc Anh
National Institute of Hygiene & Epidemiology, Hanoi, Vietnam

Jerome Kim
Director General
International Vaccine Institute, Seoul, Republic of Korea

Ying-Ru Lo
HIV, Hepatitis and Sexually Transmitted Infections Unit, WHO West Pacific Regional Office, Manila, Philippines

Linh-Vi Le
WHO West Pacific Regional Office, Manila, Philippines

Frits van Griensven
Consultant

Linqi Zhang
Comprehensive AIDS Research Center Tsinghua University Beijing, China

Van Thuy Nguyen
WHO Vietnam

Robert J. O’Connell, Sandhya Vasan
Department of Retrovirology, AFRIMS, Bangkok, Thailand

Masami Fujita
WHO Myanmar

Georgia Tomaras
Duke University, Durham, USA

Laurent Ferradini
WHO Cambodia

Chad Hughes, Hla Htay, Mark Stoove, Margaret Hellard
Burnett Institute, Melbourne, Australia

Nelson Michael, Merlin Robb, Farrukh Rizvi
US Military HIV Research Program
Henry M. Jackson Foundation
Thank you