Dairy and Childhood Health: A Focus on Bone and Obesity

Joseph M. Kindler, Ph.D. Department of Nutrition Science Purdue University West Lafayette, Indiana, USA

Better Foods for Better Health

Veyrier-du-Lac, France March 21, 2018

Outline

- Dairy recommendations
- Dairy and bone health
- Dairy and obesity
- Summary and conclusions

Dairy Recommendations in the United States

Recommended Servings of Dairy Per Day*

Children	2-3 years	2 cups
	4-8 years	2.5 cups
Adolescents	9-13 years	3 cups
	14-18 years	3 cups

* US recommendations support <u>low-fat</u> milk, yogurt, cheeses, and fortified beverages

2015-2020 US Dietary Guidelines for Americans

Dairy Recommendations Around the Globe

Dairy Intake Compared to Recommendations

Recommended Intake
Average Intake

Nutrients from Dairy

(Riboflavin)

6

Dairy and Childhood Health

Bone health

Obesity

Peak Bone Mass

- Adolescence is a critical period of bone growth
- About 90% of adult bone mass is accrued by the age of 20 years

Dairy and Height/Bone Mass Velocity

Milk Consumers vs. Milk Avoiders

Early pubertal girls (USA)

 Perceived milk intolerance was inversely associated with bone mass at several skeletal sites

Children (New Zealand)

- Milk avoiders were shorter and had lower bone mass at several skeletal sites versus those who consumed milk
- Fracture risk was greater in milk avoiders versus milk consumers

Dairy and Bone Mass: An Additive Influence of Physical Activity?

- Belgian boys and girls ages 6-12 years
- Dairy consumption measured via food frequency questionnaire
- Physical activity measured using accelerometry
- Total body aBMD measured using DXA
- Results: Dairy consumption and physical activity were positively associated with aBMD. The relationship between dairy and aBMD was <u>strongest</u> in those who were more <u>physically active</u>

Dairy Consumption and Bone Mass

- Healthy girls ages 15-16 years (N=91)
- 2-year intervention
 - Dairy (1000 mg Ca/day)
 - Control
- Dairy products included:
 - Milk
 - Flavored milk
 - Dairy dessert
 - Cheese
 - Yogurt
- aBMD measured via DXA
- Results: Dairy group had greater gains in aBMD at the trochanter, lumbar spine, and femoral neck

 indicates significant difference in change from baseline between control and supplement groups (P<.05)

Dairy and Bone Health: ...does obesity matter?

Obesity and Calcium Retention

- Analysis of pooled data from 3-week calcium balance studies
- White, Black, and Asian boys and girls ages 10-16 years (N=280)
- <u>Calcium retention</u> = Ca intake fecal Ca urinary Ca
- Results:
 - At low Ca intake, BMI had <u>no</u> <u>influence</u> on Ca retention.
 - At higher Ca intake, calcium retention was <u>enhanced in</u> <u>overweight and obese</u> adolescents.

Calcium Intake (mg/d)

Dairy and Bone: Does Obesity Matter?

- 181 healthy boys and girls ages 8-16 years
- 50% overweight/obese (BMI >85th%) and 50% healthy weight (BMI = 5th to 70th%)
- Low baseline calcium consumption: <800 mg/day
- 18-months dairy intervention (3 servings of dairy/day) or regular selfselected intake (control)

Results

- Calcium consumption:
 - Dairy = 1500 mg/day
 - Control = 1000 mg/day
- Dairy had <u>no effect</u> on BMC (total body, spine, hip, forearm)

Vogel et al: Null Effect of Dairy on Bone Mass

- Self-reported diet
 - Baseline calcium consumption
 - Calcium consumption during intervention
- 2. Free-living conditions
 - Intervention compliance
- 3. The timing and tempo of bone growth are dependent upon:
 - Age, sex, population ancestry, sexual maturation, body weight status
 - Bone mass is a "moving target"

NOF Position on Dairy and Peak Bone Mass

National Osteoporosis Foundation "Peak Bone Mass" Consensus Paper

Benefit of <u>dairy on bone health</u> in children = B

Determinants of Peak Bone Mass

Determinants of Peak Bone Mass

Why Dairy?

Bone Health

Obesity

Pediatric Obesity: A Major Cause for Concern

Pediatric obesity is a global concern

- USA: 1/3 are overweight/obese
- Globally: >100 million obese children
- Contributors to pediatric obesity
 - Genetics
 - Physical inactivity
 - Poor diet quality
 - Among many others...

Obesity prevalence in boys ages 5-19 years (darker colors represent areater prevalence)

Is Dairy Anti-Obesigenic?

Displace high calorie drinks Satiety Ca modulates fat metabolism Ca reduces fat absorption

Is Dairy Anti-Obesigenic?

Annals of Epidemiology 26 (2016) 870-882

Review article

Association of dairy products consumption with risk of obesity in children and adults: a meta-analysis of mainly cross-sectional studies

Weijing Wang MD, Yili Wu MD, Dongfeng Zhang MD*

Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, Qingdao, Shandong, People's Republic of China

Dairy and Obesity

First author		%
(Publication year)	OR (95% CI)	Weight
Tanasescu M(2000)	0.41 (0.19, 0.93)	1.08
Mirmiran P(2005)	0.73 (0.40, 0.83)	4.84
Mirmiran P(2005)	0.69 (0.34, 0.80)	3.58
Azadbakht L(2005)	0.80 (0.63, 0.98)	11.90
Dastgiri S(2006)	0.77 (0.63, 0.93)	14.65
Dastgiri S(2006)	0.73 (0.61, 0.91)	14.03
Crichton GE(2014)	0.51 (0.30, 0.89)	2.26
Perez-Rodriguez M(2012)	0.34 (0.11, 1.03)	0.55
Abreu S(2012)	0.21 (0.07, 0.62)	0.58
Abreu S(2012)	0.56 (0.31, 1.03)	1.83
Pereira Dde C(2013)	1.00 (0.63, 1.58)	3.12
Jia L(2013)	0.81 (0.67, 0.97)	15.76
Shin H(2013)	0.73 (0.61, 0.88)	16.15
Nasreddine L(2014)	0.64 (0.26, 1.56)	0.85
Nasreddine L(2014)	0.50 (0.21, 1.20)	0.90
Lee HJ(2014)	0.65 (0.46, 0.91)	5.49
Martins ML(2015)	0.95 (0.56, 1.59)	2.45
Overall (I-squared = 7.9%, p = 0.362)	0.74 (0.68, 0.80)	100.00

Major Limitation...

Most studies examining the link between dairy and obesity are observational

Randomized Controlled Trials: Dairy and Adiposity

The effect of dairy intake on bone mass and body composition in early pubertal girls and boys: a randomized controlled trial^{1,2}

Kara A Vogel,³ Berdine R Martin,³ Linda D McCabe,³ Munro Peacock,⁵ Stuart J Warden,⁶ George P McCabe,⁴ and Connie M Weaver³*

The effect of increasing dairy calcium intake of adolescent girls on changes in body fat and weight¹

Joan M Lappe,^{2,3}* Donald J McMahon,⁵ Ann Laughlin,³ Corrine Hanson,⁴ Jean Claude Desmangles,² Margaret Begley,² and Misty Schwartz³

No effect of dairy on weight gain or adiposity, regardless of body weight status

Summary Dairy and Child Health

Summary

Dairy and Child Health Gaps in Knowledge

Gaps in Knowledge

1. Correlation is not causation

- Observational studies \rightarrow causal inference is inappropriate
- Randomized trials are lacking

Gaps in Knowledge

Correlation is not causation

- Observational studies \rightarrow causal inference is inappropriate
- Randomized trials are lacking

2. Dairy consumption and obesity-related chronic disease

- Type 2 diabetes
- Cardiovascular disease
- Hypertension

Gaps in Knowledge

Correlation is not causation

- Observational studies \rightarrow causal inference is inappropriate
- Randomized trials are lacking

2. Dairy consumption and obesity-related chronic disease

- Type 2 diabetes
- Cardiovascular disease
- Hypertension

3. Infant nutrition and peak bone mass acquisition

Questions?

