

Better Foods for Better Health INFANT & CHILDHOOD NUTRITION Determinants of allergenicity and modulation of allergies. Rational for perinatal intervention. Prebiotics example.

Marie Bodinier: INRA Researcher (CR1)

INRA center Angers-Nantes, UR1268 BIA, Allergy team

marie.bodinier@inra.fr

Allergies

- > **Public health issue:** 4th World disease according to the WHO.
- The most common and earliest manifestations of the vulnerability of the immune system (IS) to the modern environment.
- > 30-40% of the world's population (Prescott, 2011).
- > No cure and no effective preventive strategy established so far.

The types of Allergies

- > **3 different types** of allergies:
 - Atopic Dermatitis (AD) :

- chronic disease with worldwide prevalence rates of 1-20%, children: 15-20% and adults: 1 to 3% (Nutten, 2015)
 - the most common allergic disease appearing early in life
 - pruritic inflammatory skin lesions associated with dry skin.
- Respiratory Allergy (RA) :

- the most common allergy observed in western countries (Bjorksten, 2008).
- affects around 20-30% of the European population.
- asthma, rhinitis or rhinosinusitis (Asher, 2006; Pawankar, 2011).

- Food Allergy (FA) : - prevalence in Europe: 5.9%, children : 4.7%; adults: 3.2% (Nwaru, 2013; Moneret-Vautrin, 2008)
 - clinical symptoms: anaphylaxis, skin lesions (urticaria, AD), respiratory tract (asthma, rhinitis) and gut disorders.

Allergy - Mechanisms

Allergy - Mechanisms

Mechanisms - Microbiota

- Complex microbial ecosystem (majority of bacteria: 400 species -1000)
- > 10¹⁴ cells is more than the total of human cells
- Colonizes nose, eyes, throat, GI tract (10¹²), skin ...

- Composition evolves all over the life:
 - implantation at birth through contact with the mother's perineal and vaginal microbiota (Lehmann, 2011).
 - modified by environment : diet, antiobiotic, ...
- Unique to each individual and tolerated by IS
- Major role in immune response modulation : oral tolerance and gut barrier maturation (Chehade, 2005; Mazmanian, 2005)
- Balanced microbiota = eubiosis : positive effect on health

Deviant microbiota = dysbiosis : induction of inflammatory phenomena related to IS such as allergies

Allergy - Mechanisms

Mechanisms - Mucosa

Mucosa (nasal, respiratory, intestinal and cutaneous) : defensive barrier

- > It's composed of polarized cells connected by tight junction to ensure sealing
- > It secretes defense molecules: mucins, antimicrobial peptides and enzymes
- > It's associated to a diversified immune system (gut) to ensure **defense** and **tolerance**

- Mucosa Associated Lymphoid Tissue (MALT) : T cells (CD4 +), B, DC, innate cells (NKT, ILC...)
- IgA secretion: protection against pathogens, immune tolerance (microbiota, food ...)
 - IgA-related to optimal microbiota

Dysfunctions/ alterations of mucosa :

- They increase permeability
- They induce defects in immune tolerance

pathologies such as allergies(Hammad, 2015)

Mechanisms - Immune system

Allergy - Mechanisms

The most frequent and earliest manifestation of the vulnerability of immune, microbial and mucosal systems related to our modern environment.

Environnemental causes of allergy

> Modern lifestyle:

- Dietary pattern: low fibres and high fat (Nauta, 2013)
- Hygiene (Strachan, 1989)
- Stress
- Environmental pollutants
- Mode of delivery
- Antibiotics

Declining microbial diversity (Abrahamsson, 2012)

Causing disruptions of mucosa and immune system maturation

(Macia, 2013; Maslowski, 2011)

Inflammatory diseases : allergies

Prescott, 2013

- detectable immune dysregulation at birth
- Clinical expression of allergy within the first months of life (Prescott, Paediatr Allergy Immunol 2011)

Perinatal period: a critical time of risk/opportunity

Exchanges of immune and bacterial factors between the fetus/infant and the mother

(Jimenez, 2008; Pfefferle, 2010; Verhasselt, 2010)

Environment in both pregnancy and early childhood can determine physiologic, immune, metabolic, and bacterial development which will influence future disease susceptibility (Hanson 2011)

> Interest to study the **early effects of lifestyle interventions** on immune function and **allergic disease** (Prescott, 2013) Especially nutritional interventions

Nutritional strategies for allergy prevention

Nutrients : able to modulate microbiota and immune system

Allergy : induced by immune and bacterial disorders

Nutrients attractive for allergy prevention

- Human Milk Oligosaccharides (HMO) (Castillo-Courtade et al, 2015)
- Probiotics (West et al, 2017)
- Omega-3 (Miles and Calder, 2017)
- Vitamin D (Yepes-Nuñez et al, 2018)
- Food introduction (Turcanu et al, 2017)
- Prebiotics

Nutritional strategies for allergy prevention

Nutrients : able to modulate microbiota and immune system

Allergy : induced by immune and bacterial disorders

Nutrients attractive for allergy prevention

- Human Milk Oligosaccharides (HMO) (Castillo-Courtade et al, 2015)
- Probiotics (West et al, 2017)
- Omega-3 (Miles and Calder, 2017)
- Vitamin D (Yepes-Nuñez et al, 2018)
- Food introduction (Turcanu et al, 2017)
- Prebiotics

Prebiotics

- Definition: Non-digestible food ingredient which stimulates selectively the growth of bacteria in the microbiota supposed beneficial for the host health (Schrezenmeir, 2001)
- Main prebiotics : GOS, FOS, inulin (Roberfroid, 2007): found in chicory, artichokes, grains ... (Barrett and Gibson, 2012)
- Breast milk: HMOS (5-8 g/L) gut maturation and immune system development

Effects of prebiotics

Suggested effect of prebiotics:

Strengthen intestinal barrier and immune system (Vinolo, 2009; Peng, 2009)

Reduce infection risks (Gibson, 2005; Kaila, 1995)

✓ Act on allergies?

Prebiotics in allergy

Prebiotics : able to modulate microbiota and immune system

Allergy : induced by immune and bacterial disorders

Prebiotics: attractive for allergy prevention > POSTNATAL:

- ✓ 10 animal studies
- ✓ 2 positive human studies and 1 meta-analysis

PERINATAL (on mother: gestation and/or lactation):

- ✓ 4 animal studies
- ✓ 2 ongoing human studies

Animal studies: allergy prevention by prebiotics in POSTNATAL

Studies on pup supplementation (3 to 8 weeks old) with various prebiotics:

2 to 3 weeks of prebiotics exposure before sensitization to allergen Supplementation during all the protocol

FOS prebiotic decreases the skin inflammation via microbiota modulation (increase of bifidobacteria)

Animal studies: allergy prevention by prebiotics in POSTNATAL

Balb/c mice supplemented with GOS / FOS / PAOS (9/1): reduction of airway hyper-responsiveness, specific IgE and pulmonary inflammation.

Human studies: allergy prevention by prebiotics in POSTNATAL

Only 2 favorable studies:

- Moro's studies (Arslanoglu , 2008; Moro, 2006) using mixture of GOS/inulin ratio 9/1 in a hydrolyzed milk formula
 - Italian cohort of infants at high atopic risk (206)
 - Formulas given during a 6-month lactation
 - Decrease of allergic disease incidence at 6 and 24 months old

Gruber's study (Gruber, 2010) using mixture of GOS/inulin/pectin

- Multicenter study in 5 European countries
- Children at low atopic risk (414) supplemented during 6-month lactation
- Prevention of atopic dermatitis
- Peventive effect on AD obtained in one year does not last 5 years (Gruber 2015).

Human studies: allergy prevention by prebiotics in POSTNATAL

A meta-analysis of four studies (1428 infants at high or no risk of allergy) (Osborn & Sinn 2013):

- Meta-analysis of 2 studies (226 infants) showed no significant difference in infant asthma.
- Meta-analysis of 4 studies demonstrated a significant reduction in eczema (1218 infants).
- > One study reported no significant difference in urticaria.

Further research is needed before routine use of prebiotics can be recommended for prevention of allergy in formula-fed infants

Perinatal period interest

Animal studies: allergy prevention by prebiotics in PERINATAL

Only 4 studies on mother supplementation:

Respiratory allergy

Hogenkamp et al, 2015

Diet enriched in FOS/GOS during gestation

OVA model of allergy in pups

A diet enriched in prebiotics (FOS / GOS) during gestation decreases airway hyper-responsiveness in offsprings through the induction of regulatory T cells at systemic level

Animal studies: allergy prevention by prebiotics in PERINATAL

Only 4 studies on mother supplementation:

> Food allergy

Bouchaud and Bodinier, 2016

Diet enriched in GOS/inulin during gestation and lactation

Wheat gliadins model of food allergy in pups

✓ Reduction of food allergy symptoms and allergy markers in pups.

A diet enriched in GOS/inulin prebiotics during gestation/lactation protects againts food allergy in mice.

Clinical studies: allergy prevention by prebiotics in PERINATAL

SYMBA clinical trial

Double-blinded RCT design : monocentric trial

Inclusion Criteria: 652 pregnant women whose infants have a first-degree relative with a history of medically-diagnosed allergic disease

		Pregna	nal suppler ancy cebo (contro iotic (GOS/F	Lad ol) n=	on period ctation 326 =326		
randomisation	visit	visit	delivery		visit	visit	visit
18 wks	27 wks	36 wks	BIRTH	week 1	3 mths	6 mths	12mths
Health Q Enviro Q SQFFQ Blood Urine Stools	Health Q Enviro Q SQFFQ Blood Urine Stools	Health Q Enviro Q SQFFQ Blood Urine Stools	Delivery data Cord Blood	Breast milk	Infant health Q breast milk Feeding Q Stool (Babe)	Infant health Q breast milk Feeding Q Blood (Mo & Babe) Stool (Mo & Babe)	

Study Sites

- Joondalup Health Campus, Joondalup, Western Australia : the main site for recruitment, randomization and follow-up.
- Telethon KIDS Institute: the main academic coordinating centre.
- Principal chief investigators: Susan Prescott, Debra Palmer, Desiree Silva

PREGRALL clinical trial

Double-blinded RCT design: multicenter trial

Inclusion Criteria: 376 allergic pregnant women

	I supplementati Pregnancy acebo (control) n		Postnatal follow-up		
Pret	oiotics GOS/inulir	n n= 188			
randomization	visit	delivery	visit	visit	
20 wks	32 wks	BIRTH - J1 to J5	2 mths	12 mths	
Health Q Blood Stools	Health Q Stools Blood	Health Q blood, cord blood, stools and buccal Swab (mother/ newborn), colostrum, breastmilk	Health Q Blood (mother) Stools (mother, infant) Breastmilk	Health Q AD severity (SCORAD) Prick-test Life quality (FDQLI) Blood (infant), buccal swab, stools (mother, infant)	

Study Sites

- Nantes, Angers, Tours hospitals: the main sites for recruitment and follow-up.
- Centre of clinical investigation for women, children and teens: the main coordinating centre.
- Principal chief investigators: Hélène Aubert, Sébastien Barbarot
- Scientific coordinator: Marie Bodinier

SYMBA and PREGRALL aims

SYMBA Study

<u>AIM 1. The effects of the intervention on allergic disease outcomes in</u> the offspring at 1 year of age:

- SYMBA: eczema.
- PREGRALL: **AD**.

AIM 2. The effects on colonization patterns and SCFA microbial metabolites:

- on both maternal and infant gut microbiota.

AIM 3. Assessment of the immunomodulatory effects during the intervention:

- Immune functions in blood of mother and offspring, both at birth (antenatal effects) and during infancy, to examine the trajectory of immune development.

AIM 4. Analyse of the breast milk composition (PREGRALL).

Translation of future results obtained by SYMBA and PREGRALL RCTs

Demonstrating the interest of prebiotics to prevent allergies via 2 clinical trials run in different countries.

-

Defining the most effective timing and duration of maternal prebiotics supplementation: gestational period alone or combined with lactation ?

Demonstrating the importance of microbiota and IS balance early in life in correlation with the emergence of allergic disease.

Conclusion

- Allergy: linked to microbial, mucosal and immune disorders.

- Perinatal period: window of modulation for allergy prevention.

- Nutritional strategy in early life: very encouraging.

Thanks for your attention

My Allergy team BIA unit - INRA of Nantes FRANCE

My French collaborators

- S. Barbarot (Nantes Hospital)
- A. Magnan (UMR 1087, INSERM)
- M. Champ (UMR PHAN, INRA)
- M. Neunlist (UMR 913, INSERM)

My Australian collaborators

Childhood Allergy and Immunology Research-School of Paediatrics and Child Health-UWA- Perth- AUSTRALIA Debbie Palmer and Susan Prescott

