

### Natural variation in HIV transcription in HIV-infected individuals on antiretroviral therapy

Professor Sharon R Lewin, FRACP, PhD, FAHMS Global Virology Network, Annecy, France. Nov 28-30., 2018



The Royal Melbourne Hospital

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

#### Australia tackles HTLV-1

HTLV-1 research has long been under-funded, hampering research and control. A new Australian taskforce aims to change the situation at home and abroad. Karl Gruber reports.

Doctors raise alarm about ancient HTLV-1 virus: 'Prevalence is off the charts' in Australia **By Jacqueline Howard**, **CNN** Updated 0819 GMT (1619 HKT) May 8, 2018





The Hon. Greg Hunt MP Minister for Health

The Hon. Ken Wyatt AM, MP Minister for Aged Care Minister for Indigenous Health

#### MEDIA RELEASE

25 May 2018

#### Funding to combat Human T-cell Lymphotropic Virus-1 in remote communities

The Turnbull Government will provide \$8 million to form a taskforce, in collaboration with the states and territories, to combat Human T-cell Lymphotropic Virus-1 (HTLV-1) and other emerging communicable diseases in remote communities.

### Rapid rebound of HIV when ART is stopped



Years on ART

### **HIV persists on ART in multiple forms**



## There is a spectrum of HIV transcriptional activity on ART: why?



### **Productive infection**

DNA positive RNA positive HIV protein positive DEATH

### Latent infection DNA positive RNA negative HIV protein negative SURVIVAL

## Variation in cell associated unspliced HIV RNA in HIV-infected individuals on ART



N=30 participants in a randomised clinical trial. B1 = screening; B2 = between screening and enrolment; B3 = day of administration of disulfiram

Elliott et al., Lancet HIV 2015

# Does HIV transcription have a circadian rhythm?

### **Circadian Cycles**



- CLOCK and BMAL1 heterodimers bind to an E-box to drive transcription
- Control is mediated through *Per* and *Cry* genes

Gekakis et al., Science 1998; Hogenesch et al., PNAS 1998; Kume et al., Cell 1999; Jin et al., Cell 1999

# Why would this be relevant to HIV transcription?

- The HIV LTR has 4 E-box binding sites with two flanking the TATA bindings site
- E-boxes are palindromic sequence motifs (CANNTG) for basic helixloop-helix (bHLH) class of DNA-binding proteins
- Important for the regulation of transcription of multiple retroviruses including HIV-1 and HTLV-1
- CLOCK proteins have intrinsic histone acetyl transferase activity and can mediate chromatin re-modelling through histone acetylation
- In individuals off ART, plasma HIV RNA has circadian variation

Terme et al., Retrovirology 2009; Ou et al., J Virol 1994; Doi et al., Cell 2006; Zeichner et al., Pathobiology 1996;

# Visit related changes in expression of genes controlling circadian rhythms



# Increased cortisol and thyroid stimulating hormone at B3



Measurement of T-cell numbers, T-cell subsets, activation markers and H3 acetylation showed no change at the three baseline timepoints

Chang et al., AIDS 2018

# Major effect of "visit" and modest effect of "time" on unspliced HIV RNA

| Parameters                          | Estimate | Standard Error | P-value               |
|-------------------------------------|----------|----------------|-----------------------|
| μ, Intercept                        | 0.80     | 0.33           | 0.016                 |
| $\gamma$ , Time of blood collection | 0.051    | 0.026          | 0.046                 |
| (per hour of day)                   |          |                |                       |
| β <sub>2</sub> , Visit 2            | 0.10     | 0.07           | 0.119                 |
| β <sub>3</sub> , Visit 3            | 0.62     | 0.10           | 9 x 10 <sup>-10</sup> |

Using a path analysis, we replaced the time of blood draw in the mixed effects model with the expression levels of the CLOCK-associated genes.

BMAL1 was the only gene that had a statistically significant effect on log CA-US HIV RNA, with an effect size of 8.508 (SE 3.777, p-value = 0.028).

### **Evaluation of changes in HIV transcription over** 24 hours



Prospective study of HIV-infected individuals on ART (n=17). Strict attention to lights, diet and other stimulants (University of Wisconsin - Madison)

## **Circadian variation of HIV RNA over a 24 hour period in individuals on ART**



### **CLOCK/BMAL-1 together increase HIV** transcription



Chang et al., AIDS 2018

. . . . .

## Increase in HIV transcription initiation with CLOCK/BMAL-1 in J-Lat cell line



## E-box2 is required for CLOCK/BMAL-1 mediated HIV transcription



Chang et al., AIDS 2018

### Summary

- Natural variation in CA-US HIV RNA in individuals on ART with a clear relationship to time over a 24 hour period
- BMAL-1 was the only circadian gene that was associated with both CA-US HIV RNA and time.
- BMAL-1/CLOCK forms a heterodimer and activated HIV transcription through binding to the second E-box
- The CLOCK/BMAL-1 pathways could be exploited to identify new latency reversing agents (LRA) or potentially enhance activity of LRAs based on time of administration

# Effect of stress on HIV transcription

### **Evaluation of stress: control and stress day**



N=25 HIV-infected individuals on ART, CD4 current = 637 cells/ul; nadir = 240 cells/ul

### **Evaluation of stress: Trier Social Stress Test**



### **Physiological evaluation:**

Heart rate variability= parasympathetic

• Respiratory Sinus Arrhythmia (RSA) = vagal tone

Impedance cardiography = sympathetic

- Pre-ejection period (PEP)
- Cardiac output

### **HIV evaluation**

Virology:

HIV DNA and US RNA

Immunology

- T-cell subsets
- Activation markers

### **TSST induces physiological stress**



## Significant increase in unspliced HIV RNA with stress



No significant changes in T-cell subsets or activation following stress

### Autonomic nervous system (ANS) changes associated with changes in unspliced HIV RNA but not HIV DNA



| ANS Measure                           | US RNA          |         | DNA             |         |
|---------------------------------------|-----------------|---------|-----------------|---------|
|                                       | Spearman<br>rho | P-value | Spearman<br>rho | P-value |
| Pre-ejection<br>Period (PEP)          | -0.59           | 0.002   | -0.09           | 0.68    |
| Respiratory Sinus<br>Arrhythmia (RSA) | -005            | 0.81    | -0.01           | 0.96    |
| Cardiac Output<br>(CO)                | 0.60            | 0.003   | -0.02           | 0.94    |

### **Summary and implications**

- Significant natural variation of cell associated unspliced HIV RNA in individuals living with HIV on ART with a clear effect of time andstress. This needs to be considered in the design of clinical trials of LRAs
- The circadian transcription factors, CLOCK and BMAL1, upregulate HIV LTR-mediated transcription initiation and this upregulation requires an intact E-box 2 motif
- Circadian proteins and or stress represent pathways that could potentially be exploited for latency reversal through development of novel drugs or optimising the timing of administration of LRAs
- Other cell associated markers of RNA transcription such as multiply spliced RNAs may be better biomarkers of latency reversal in clinical trials

### **Acknowledgements**

**Doherty Institute, Uni Melb** and Royal Melbourne Hospital Lewin/Cameron Lab Paul Cameron Jared Stern Jenn Zerbato Jenny Anderson Youry Kim Wei Zhao Vanessa Evans Talia Mota Ajantha Solomon Surekha Tenakoon Ashanti Dantanarayana Judy Chang **Barbara Scher** Jennifer Audsley

RMIT University Michael Roche Melissa Churchill

Melbourne Pathology Ken Sikaris





National Institute of Mental Health



National Institute of Allergy and Infectious Diseases



### **Acknowledgements**

**Doherty Institute, Uni Melb** and Royal Melbourne Hospital Lewin/Cameron Lab Paul Cameron Jared Stern Jenn Zerbato Jenny Anderson Youry Kim Wei Zhao Vanessa Evans Talia Mota Ajantha Solomon Surekha Tenakoon Ashanti Dantanarayana Judy Chang **Barbara Scher** Jennifer Audsley

RMIT University *Michael Roche* Melissa Churchill

Melbourne Pathology Ken Sikaris The Alfred Hospital James McMahon Sharon Avery *Christina Chang* Jill Lau Julian Elliott Jenny Hoy Janine Roney Michelle Boglis

**Kirby Institute, UNSW** Miles Davenport Arnold Reynaldi

UCSF, San Francisco Steven Deeks Peter Hunt *Rick Hecht* Patricia Moran Wendy Mendes Jeff Milush Becky Hoh Peter Bacchetti Wendy Hartogenesis University of Sydney Sarah Palmer

The University of Wisconsin-Milwaukee Leslie Cockerham

Case Western University Rafick Sekaly

Los Alamos National Laboratory Alan Perelson *Nick Hengartner* Ruian K

Harvard University Vivek Naranbhai

# making aids history

#### Australian Government

National Health and Medical Research Council

NHMRC



Australian Centre for HIV and Hepatitis Virology Research



National Institute of Mental Health



National Institute of Allergy and Infectious Diseases

