



# Virus-host interactions in herpesvirus infections of human nervous tissues

#### **Georges M.G.M. Verjans MSc PhD**<sup>1,2</sup>

<sup>1</sup> Dept. Viroscience, Erasmus MC, Rotterdam, The Netherlands <sup>2</sup> Research Center for Emerging Infections and Zoonoses, Hannover, Germany

Annecy, November 30th 2018

Mouse models to study role T-cells in pathology multiple sclerosis and control herpesvirus latency

#### MS mouse model: EAE

#### HSV-1 latency mouse model



CD8<sup>+</sup> T cells

All (animal) models (of neurodegeneration) are wrong. Are they also useful? Richard M. Ransohoff (J Exp Med; 20NOV18)

A DEPARTMENT OF Erasmus MC

zamo

Dutch Brain Bank collects brain tissues from donors with a short post-mortem delay; < 6 hrs

#### **CNS: Multiple sclerosis**



#### **PNS: HSV-1 and VZV latency**



Unique specimens to study human neurotropic virus infections in humans

A DEPARTMENT OF Erasmus MC

zalus

## Virus-host interactions in herpesvirus infections of human nervous tissues

- 1. Determine the antigen specificity of T-cells in cerebrospinal fluid and brain tissue of multiple sclerosis patients.
- 2. Determine the viral transcriptome and its function in latently HSV-1and VZV-infected human trigeminal ganglia.
- 3. Determine the antigen specificity of T-cells in latently HSV-1- and VZV-infected human trigeminal ganglia.

A DEPARTMENT OF Erasmus MC

## Virus-host interactions in herpesvirus infections of human nervous tissues (1/3)

- 1. Determine the antigen specificity of T-cells in cerebrospinal fluid and brain tissue of multiple sclerosis patients.
- 2. Determine the transcriptome and its function in latently HSV-1- and VZV-infected human trigeminal ganglia.
- 3. Determine the antigen specificity of T-cells in latently HSV-1- and VZV-infected human trigeminal ganglia.

A DEPARTMENT OF Erasmus MC

### **Multiple Sclerosis: risk factors**

### Genetics <sup>102 SNP</sup> HLA haplotype

Other MS low vit. D bad luck? Epstein-Barr virus infection Pfeiffers' disease high salt diet Environmental

smoking

A DEPARTMENT OF Erasmus MC

Central role T-cells in MS pathogenesis: which antigens are recognized?



## Intrathecal and -cerebral T-cell responses in multiple sclerosis patients



#### No substantial T-cell reactivity towards MS-associated Ag in CSF-, NAWM- and WML-TCL



Donor #1○ ,#2●,#3● ,#4● ,#5△ ,#7▲ ,#8▲, #17▲ ,#19□,#20■ ,#21■ ,#22■ ,#24◇ ,#27◆



## EBV-specific T-cells are enriched in CSF of patients with CIS and early MS



Increased EBV-specific CD4 and CD8 T-cells in CSF of both CIS and early MS patients

A DEPARTMENT OF Erasmus MC

## EBV-specific T-cells are enriched in CSF of patients with CIS and early MS



Increased EBV-specific CD4 and CD8 T-cells in CSF of both CIS and early MS patients

EBV-specific CD4 and CD8 Tcells frequencies correlate intra-individually

A DEPARTMENT OF Erasmus MC

zafing

#### EBV-specific CD8 T-cells are enriched in chronic active demyelinating MS lesions



A DEPARTMENT OF Erasmus MC

zafing

#### Donor #6: *in situ localization of EBV-specific* CD8 T-cells in surplus MS lesion tissue

Lesion #1

Lesion #2



## Virus-host interactions in herpesvirus infections of human nervous tissues (2/3)

- 1. Determine the antigen specificity of T-cells in cerebrospinal fluid and brain tissue of multiple sclerosis patients.
- 2. Determine the viral transcriptome and its function in latently HSV-1and VZV-infected human trigeminal ganglia.
- 3. Determine the antigen specificity of T-cells in latently HSV-1- and VZV-infected human trigeminal ganglia.

A DEPARTMENT OF Erasmus MC

### VZV infection: Varicella and Herpes Zoster







#### Old Dogma (e.g. Fields 2013):

Expression of ~10 VZV genes and ~6 VZV proteins in human neurons

### HSV-1 and VZV transcriptome: RNAseq analysis lytic vs. latent infection







Detection of neurons latently infected with HSV-1 and VZV in human TG by in-situ hybridization





~0.5% VZV VLT<sup>POS</sup> TG neurons

#### ~5% HSV-1 LAT<sup>POS</sup> TG neurons

### VLT inhibits VZV replication *in vitro* by repressing viral ORF61 expression



A DEPARTMENT OF Erasmus MC

### VLT inhibits VZV replication *in vitro* by repressing viral ORF61 expression





## Virus-host interactions in herpesvirus infections of human nervous tissues (3/3)

- 1. Determine the antigen specificity of T-cells in cerebrospinal fluid and brain tissue of multiple sclerosis patients.
- 2. Determine the viral transcriptome and its function in latently HSV-1and VZV-infected human trigeminal ganglia.
- 3. Determine the antigen specificity of T-cells in latently HSV-1- and VZV-infected human trigeminal ganglia.

A DEPARTMENT OF Erasmus MC

### **Herpetic Eye Diseases**









1: Periocular dermatitis





4: Infectious epithelial kera-5: Neurotrophic keratitis titis (dendritic keratitis)



6a: stromal keratitis Immune stromal keratitis



7: Endotheliitis



6b: stromal keratitis



8: Uveitis



Necrotizing stromal keratitis





6c: stromal keratitis Immune ring



9: (Epi-)scleritis





3: Conjunctivitis (with ulceration)

#### Asymptomatic shedding of HSV-1 and VZV at oral mucosa in latently infected individuals



VZV: incidental asymptomatic shedding at oral mucosa HSV-1: ~every 13 days for 6 hrs high loads of infectious virus!

### HSV-1 & VZV hide in human trigeminal ganglia: Lifelong Latency



## T-cell responses in latently HSV-1 and VZV-infected human trigeminal ganglia



### Neuron-interacting T-cell clusters in 'normal' human TG







#### T-cell clusters in human TG interact with HSV-1 LAT<sup>POS</sup> neurons



A DEPARTMENT OF Erasmus MC

## CD8 T-cells express CTL markers and CD137: antigen-driven T-cell retention?



A DEPARTMENT OF ERASMUS MC

zalino

### Human TG-derived T-cells recognize HSV-1, but not VZV proteins



zafing

### **Complexity of CD4 and CD8 T-cell** target antigen discovery for HSV-1



#### Genome: >80 genes

- Expressed in highly regulated fashion
- Not every gene is expressed during HSV life cycle

Where to start ....

**Complete ORFeome** 

A DEPARTMENT OF Erasmus MC

### HSV-1 antigens recognized by CD8 T-cells recovered from human TG

#### Kinetic class of recognized HSV-1 proteins

| Patient ID | HLA allele | Immediate early  | Early         | Late              |
|------------|------------|------------------|---------------|-------------------|
| TG1        | A*0201     |                  | -             | UL6               |
|            | A*0201     | -                | -             | gB                |
| TG2        | A*0201     | ICP0 aa642-651   | ICP8 aa1096-1 | 105 -             |
|            | B*1501     | -                | ICP6          | -                 |
| TG3        | A*0101     | VP16 aa090-099   |               | gL aa066-074      |
|            | A*0101     | VP16 aa479-488   | -             | gK aa201-209      |
| TG4        | A*0201     | -                | -             | UL25              |
| TG5        | B*4001     | -                | ICP6          | -                 |
| TG6        | A*2902     | -                | -             | VP13/14 aa508-516 |
|            | B*0702     | -                | ТК            | VP11/12 aa386-394 |
| TG7        | A*0301     | ICP4 aa1096-1105 | -             |                   |
|            | A*3101     | -                | ICP6          | -                 |
|            | B*4001     | VP16 aa163-175   | ICP6          | -                 |
| TG12       | B*4001     | -                | ICP6          | -                 |

## HSV-1 specific CD8 T-cells interact with neuron somata in human TG

#### Symmetry: left = right TG

- Left TG used for generation of T-cell lines and HSV-1 epitope definition
- Right TG used for *in situ* HLA I/peptide tetramer stainings

#### **TG2 tissue sections**

- DAPI, nuclei(blue)
- Anti-CD8 (green)
- HLA-A\*0201 tetramers (red)
  - ICP0<sub>642-651</sub>
  - ICP8<sub>1096-1105</sub>



### Conclusions

- EBV-specific T-cells selectively infiltrate CSF and CNS tissue of MS patients: role EBV-specific T-cells in MS pathology?
- Novel VZV latency-associated transcript (<u>VLT</u>) is the key switch of lytic/ latent VZV infection: <u>potential gene to target in novel chickenpox vaccine</u>.
- HSV-1-, but not VZV-specific T-cells are selectively retained in latently infected human TG: <u>HSV-1-specific T-cells control HSV-1 latency!</u>
- <u>HSV-1 ICP6 & VP16</u> are immuneprevalent targets of intra-TG virusspecific T-cell response: <u>potential HSV-1 subunit vaccine candidates.</u>

A DEPARTMENT OF Erasmus MC



### Thank you for your attention

## **Questions?**