

Animal reservoirs in disease control and eradication

J. Segalés







## Numerous infectious diseases are shared by animals and humans

| Table 1. Infections shared<br>(Estimated from McNeill 19 |                                                                                          | Available online at www.sciencedirect.com<br>ScienceDirect                                                                                                               | ELSEVIER<br>www.elsevier.com/locate/jepa               |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| animal                                                   | Companion Animals as a Source of Viruses for<br>Human Beings and Food Production Animals |                                                                                                                                                                          |                                                        |  |
| dog<br>cattle<br>sheep, goat                             | L. A. Reperant<br>A. D. M. E. Oste                                                       | *, I. H. Brown <sup>†</sup> , O. L. Haenen <sup>‡</sup> , M.<br>erhaus <sup>*</sup> , A. Papa <sup>¶</sup> , E. Rimstad <sup>  </sup> , JJ<br>and T. Kuiken <sup>*</sup> | D. de Jong <sup>§</sup> ,<br>F. Valarcher <sup>#</sup> |  |
| pig<br>horse                                             |                                                                                          | 42<br>35                                                                                                                                                                 |                                                        |  |
| poultry<br>rats, mice                                    |                                                                                          | 26<br>39                                                                                                                                                                 |                                                        |  |
| wild species<br>total                                    |                                                                                          | 114<br>298                                                                                                                                                               |                                                        |  |

Weiss, 2001

<sup>a</sup> Numbers overlap as some infections are shared among many species.





#### ... and this is not new!

| T 11 0   | E . 1       | C 1     | · c .:     | 7.          | · · /  |        |
|----------|-------------|---------|------------|-------------|--------|--------|
| Table 3. | Examples of | t human | infectious | diseases of | anımal | origin |
|          |             |         |            |             |        |        |

| disease      | microbe       | animal source | date of crossover |  |
|--------------|---------------|---------------|-------------------|--|
| malaria      | parasite      | chimpanzee    | ca. 8000 BCE      |  |
| measles      | virus         | sheep or goat | ca. 6000 BCE      |  |
| smallpox     | virus         | ruminant?     | > 2000 BCE        |  |
| tuberculosis | mycobacterium | ruminant?     | > 1000 BCE        |  |
| typhus       | rickettsia    | rodent        | 430 BCE           |  |
| <i>,</i> 1   |               |               | 1492 CE           |  |
| plague       | bacterium     | rodent        | 541 CE            |  |
| 10           |               |               | 1347 CE           |  |
|              |               |               | 1665 CE           |  |
| Dengue       | virus         | monkey        | ca. 1000 CE       |  |
| yellow fever | virus         | monkey        | 1641 CE           |  |
| Spanish 'flu | virus         | bird, pig     | 1918 CE           |  |
| AIDS/HIV-1   | virus         | chimpanzee    | ca. 1931 CE       |  |
| AIDS/HIV-2   | virus         | monkey        | 20th century      |  |







## The interface between animal and human diseases

**1821-1902:** Rudolf Virchow recognizes the link between human and animal health

1849-1919: William Osler, father of (comparative) veterinary pathology
1947: the Veterinary Public Health division is established at CDC
1927-2006: Calvin Schwabe coins the term "one medicine" and calls for a unified approach against zoonoses that uses both human and veterinary medicine

**2004:** the Wildlife Conservation Society published the 12 Manhattan principles













12 Manhattan Principles – key words (http://www.wcs-

ahead.org/manhattan\_principles.html)







### AGROALIMENTÀRIES

## How the concept "one health" was born?



"The One Health concept is a worldwide strategy for expanding interdisciplinary collaborations and communications in all aspects of <u>health care</u> for humans, animals and the environment."

**Emphasis on zoonosis and vector-borne diseases** 









### Control, prevention and eradication of zoonotic and vector-borne diseases



Focus on breaking the chain of transmission at its epidemiological weakest step

The most susceptible one for intervention



## Control at the weakest epidemiological step... options...



### RESERVOIR

- Control or eliminate the agent at the source of transmission
- Protect portals of entry (manner in which a pathogen enters a susceptible host)
- Increase host's defenses
- Others...



### **Definition of reservoir**

"A reservoir is any person, animal, arthropod, plant, soil, or substance (or combination of these) in which an infectious agent normally lives and multiplies, on which it depends primarily for survival, and where it reproduces itself in such manner that it can be transmitted to a susceptible host."



https://emedia.rmit.edu.au/infection\_control/content/1\_Reservoir/01\_rese\_de.htm



### Definition of reservoir - complexity (Haydon *et al.*, 2002)

- One or more epidemiologically <u>connected</u> <u>populations or environments in which the</u> <u>pathogen can be permanently maintained</u> and from which infection is transmitted to the defined target population.
- Populations in a reservoir may be <u>the same or different</u> species as the target and may include vector species





## Definition of reservoir (Haydon et al., 2002) - glossary

- Target population (TP): population of interest (humans in this case)
- Non-target populations (NTP): potentially susceptible host populations epidemiologically connected with the TP ("RESERVOIR")
- Critical community size (CCS): minimum size of a closed population within which a pathogen can persist indefinitely
- Maintenance populations (MP): populations larger than the CCS
- Non-maintenance populations (NMP): populations smaller than the CCS
- Maintenance community: in complex systems, NMPs able to keep pathogen transmission (behaves as a MP)
- Source population: population that transmits infection directly to the TP







### Definition of reservoir (Haydon et al., 2002)

Example: potential complexity of rabies reservoir in Zimbabwe and eventual intervention



If jackals with (A) or without (B) other wild carnivore populations constitute a maintenance community independent of dogs, then vaccination of dogs alone will not result in rabies elimination in the target If jackals do not constitute a maintenance community independent of dogs (C), then dog vaccination should clear rabies from the reservoir







Identification of the reservoir is not an easy task sometimes...

### A reservoir needs to maintain the pathogen and have a feasible transmission route

High-genetic similarity of the pathogen found in the reservoir system High degree of functional similarity (infectivity and viability) Spatial and temporal connectivity Maintaining pathogen viability



Hallmaier-Wacker et al., 2017



### **Examples of NTP as maintenance populations** (Hallmaier-Wacker *et al.*, 2017)

Maintenance in NT

|                                                              |        |            | Main transmission     | High-genetic | Functional |
|--------------------------------------------------------------|--------|------------|-----------------------|--------------|------------|
| Pathogen                                                     | Target | Non-target | route                 | similarity   | similarity |
| Influenza A virus (H1N1)                                     | Human  | Swine      | Aerosol               | Х            | Х          |
| MERS-Coronavirus                                             | Human  | Camel      | Direct contact        | Х            | Х          |
| <i>Brucella melitensis</i> (localized brucellosis)           | Human  | Sheep      | Food-borne            | Х            | Х          |
| Immunodeficiency virus                                       | Human  | NHP        | Direct contact        | (X)          | NP         |
| <i>Treponema pallidum pertenue</i> (yaws)                    | Human  | NHP        | Direct contact/vector | Х            | (X)        |
| <i>Mycobacterium bovis</i> (bovine tuberculosis)             | Human  | Cattle     | Food-borne/aerosol    | Х            | Х          |
| Rabies virus                                                 | Human  | Fox        | Bite                  | Х            | Х          |
| <i>Echinococcus multilocularis</i> (alveolar echinococcosis) | Human  | Fox        | Oral/fecal            | Х            | Х          |
| Hantavirus                                                   | Human  | Rodent     | Aerosol               | Х            | Х          |
| Ebola virus                                                  | Human  | Bats       | Contact/aerosol       | Х            | NP         |
| Zika virus                                                   | Human  | NHP        | Vector                | (X)          | NP         |
| <i>Borrelia burgdorferi</i> (borreliosis)                    | Human  | Wildlife   | Vector                | Х            | Х          |
| Yellow fever virus                                           | Human  | NHP        | Vector                | Х            | Х          |



Gene

le Catalunva

## Identification of the reservoir is not an easy task sometimes...

It may require years of field and  $\epsilon$ limiting an early and timely interve





EPIDEMIOLOGY

## Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes

Simon A. Babayan<sup>1,2</sup>, Richard J. Orton<sup>3</sup>, Daniel G. Streicker<sup>1,3\*</sup>





Bayaban et al., 2018

1.0

0.0

NA





#### EPIDEMIOLOGY

#### Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes

Simon A. Babayan<sup>1,2</sup>, Richard J. Orton<sup>3</sup>, Daniel G. Streicker<sup>1,3\*</sup>

#### Advantages:

- decrease the time between virus discovery and targeted research
- surveillance and management, mostly focused on disease control (and eventual eradication) at the origin

#### **Disadvantages:**

limitations in accuracy (prediction of vector type of 91% and host type of 72%)



Woolhouse et al., 2018



### Intervention strategies



#### RESERVOIR

- Control or eliminate the agent at the source of transmission
- Protect portals of entry (manner in which a pathogen enters a susceptible host)
- Increase host's defenses

Once the reservoir system has been identified, control or elimination at the source will depend on a number of factors:

- Policy (region, country) culling policies, quarantine, vaccination
- Diagnostic capabilities
- Treatment/prevention measures available
- Likelihood of intervention (wildlife)





## Examples of pathogen control at the source: avian influenza

Vaccine

AVIAN DISEASES 51:332-337, 2007

#### Efficacy of Two H5N9-Inactivated Vaccines Against Challenge with a Recent H5N1 Highly Pathogenic Avian Influenza Isolate from a Chicken in Thailand

Michel Bublot,<sup>A</sup> François-Xavier Le Gros,<sup>A</sup> Daniela Nieddu,<sup>B</sup> Nikki Pritchard,<sup>C</sup>



Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus

IIII Generalital Darrell R. Kapczynski<sup>a,\*</sup>, Motoyuki Esaki<sup>b</sup>, Kristi M. Dorsey<sup>b</sup>, Haijun Jiang<sup>a</sup>,



## **Examples of pathogen control at the source: Nipah virus infection**



1998-99: Infected zones of 2 km radius and buffer zones of 10 km radius were imposed around infected premises. All pigs within the buffer zone were culled over a 2-month period (a total of 901,228 pigs from 896 farms) (source: FAO)

Generalitat de Catalunya



**CReSA** 

## Examples of pathogen control at the source: rabies

#### **PHILOSOPHICAL** TRANSACTIONS OF 590 THE ROYAL SOCIETY Rabies Vaccine Bait pot exposure 29 million receiv direct cost system: \$1 patient-bo \$1.4 bill de catalunya

The elimination of fox rabies from Europe: determinants of success and lessons for the future

bugh

Conrad M. Freuling<sup>1,†</sup>, Katie Hampson<sup>2,†</sup>, Thomas Selhorst<sup>3,†</sup>, Ronald Schröder<sup>3</sup>, Francois X. Meslin<sup>4</sup>, Thomas C. Mettenleiter<sup>1</sup>

and Thomas Müller<sup>1</sup>

**ivestock duction and i livelihoods** stock losses: 2 million yr<sup>-1</sup> demand for PEF



## Examples of pathogen control at the source: MERS-CoV

VIROLOGY

## An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels

Bart L. Haagmans,<sup>1\*</sup> Judith M. A. van den Brand,<sup>1</sup> V. Stalin Raj,<sup>1</sup> Asisa Volz,<sup>2</sup> Peter Wohlsein,<sup>3</sup> Saskia L. Smits,<sup>1</sup> Debby Schipper,<sup>1</sup> Theo M. Bestebroer,<sup>1</sup> Nisreen Okba,<sup>1</sup> Robert Fux,<sup>2</sup> Albert Bensaid,<sup>4</sup> David Solanes Foz,<sup>4</sup> Thijs Kuiken,<sup>1</sup> Wolfgang Baumgärtner,<sup>3</sup> Joaquim Segalés,<sup>5,6</sup> Gerd Sutter,<sup>2\*</sup> Albert D. M. E. Osterhaus<sup>1,7,8\*</sup>





Vergara-Alert et al., 2017

caque

nose

Llama



### Take home messages

- Most emerging and re-emerging diseases are of zoonotic or vectorborne origin
- A reservoir is a complex network of populations in which the pathogen is maintained and from which infection is transmitted to the target population
- Animal and vector reservoirs might be potentially predicted based on signatures of RNA viral genomes
- Most of the control measures at reservoir level, when feasible, imply culling or immunization; eventually, action can be taken on wildlife





### **Acknowledgements**





Generalitat de Catalunya





**Universiteit Utrecht** 



Zoonoses Anticipation and Preparedness Initiative

efpia



Innovative Medicines Initiative



# VIRUS NETWORK



## BARCELONA 2019



#### www.virologia2019.com



## Thank you very much for your attention!!!



