

Influenza country achievements-South Africa

Dr Sibongile Walaza <u>sibongilew@nicd.ac.za</u> Centre for Respiratory Disease and Meningitis National Institute for Communicable Diseases 8th MENA Influenza Stakeholders Networks Meeting 10-11 April 2018

Outline

- Surveillance for influenza in South Africa
 - Brief description of surveillance programmes
- Data from surveillance
 - Seasonality and intensity of influenza seasons
 - Risk groups for severe influenza-associated illness
 - Strain characterisation
 - Vaccine effectiveness
- Influenza policy
- Conclusion

South Africa

- Middle income
- Temperate climate
- Population HIV prevalence 13% in 2016
- 5.5 million living with HIV in 2014
- 500,000 new TB cases each year

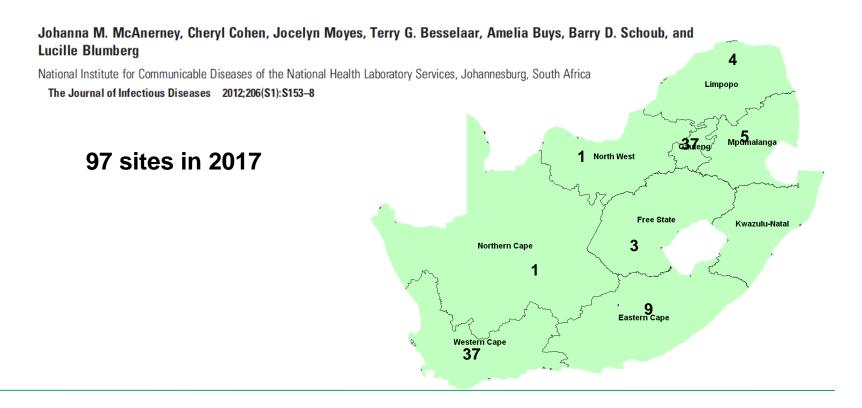
Leading causes of death 2013-2015

0	1								
	2013			2014			2015		
Causes of death (based on ICD-10)	Rank	Number	%	Rank	Number	%	Rank	Number	%
Tuberculosis (A15-A19)**	1	41 904	8,8	1	39 495	8,3	1	33 063	7,2
Diabetes mellitus (E10-E14)	5	23 133	4,9	3	23 966	5,0	2	25 070	5,4
Cerebrovascular diseases (I60-I69)	4	23 158	4,9	2	24 131	5,1	3	22 879	5,0
Other forms of heart disease (I30-I52)	6	22 189	4,7	4	22 928	4,8	4	22 215	4,8
Human immunodeficiency virus [HIV] disease (B20- B24)	3	23 825	5,0	6	22 729	4,8	5	21 926	4,8
Influenza and pneumonia (J09-J18)	2	24 345	5,1	5	22 813	4,8	6	20 570	4,5

Influenza surveillance programmes in South Africa

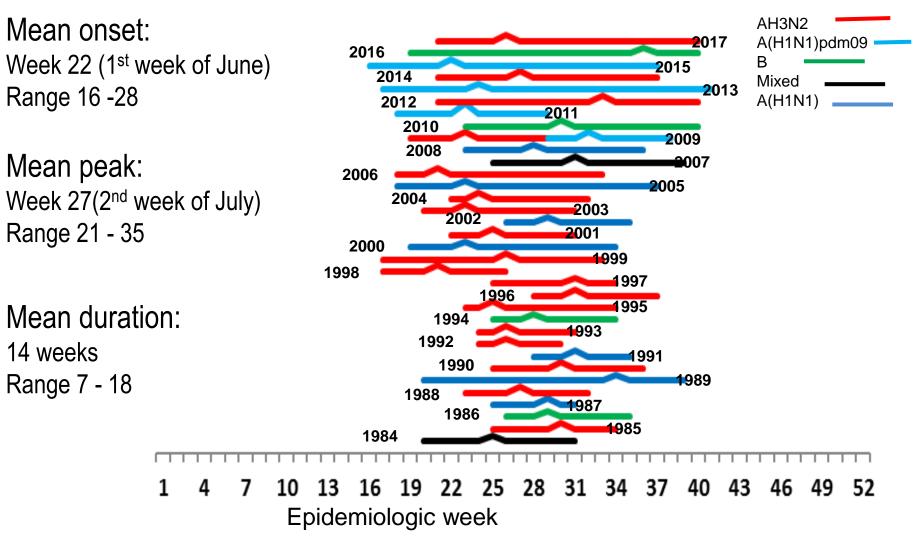
Program	Period	Coverage	Population	Cases	Main Objectives
Viral Watch	1984- current	National sentinel	Mainly private some public	ILI	 Timing and geographic variation Characterize strains Annual vaccine effectiveness
Enhanced viral watch	2009- current	National sentinel	Public sector	SARI	Identify SARI in all 9 provinces
Severe acute respiratory tract infection (SARI)	2009- current	Sentinel Sites in 5 Provinces (GP, KZN, MP, NWP,WC)	Public sector	SARI/ SCRI	 Trends and burden of SARI Identify high risk groups Estimate severity of annual influenza seasons
Respiratory Consultations	2005- current	GP, WCP, KZN, FSP, GP, NW, WC	Private sector	Hospitalisatio ns	 Seasonal and annual trends in hospital admissions Timing of the influenza season
Influenza- associated mortality	1997-2008	National	Public and private	Deaths	Estimate influenza-associated excess mortality
Influenza-like illness	2012- current	Sentinel Sites in 3 provinces (MP,KZN, NW)	Public sector	ILI	Describe the burden and aetiology of outpatient ILI
Influenza surveillance	2011	Sentinel sites in 1 province (GP)	Public sector	Hospitalisatio ns	 Trends and burden of influenza- associated illness in peads ,adults and pregnant women

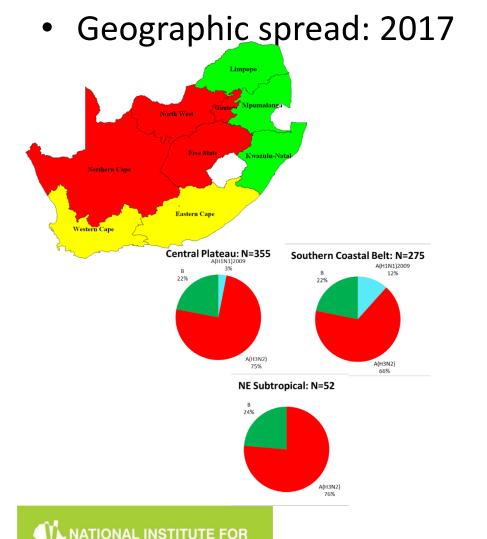
Pneumonia surveillance sites, South Africa-2009 - 2017



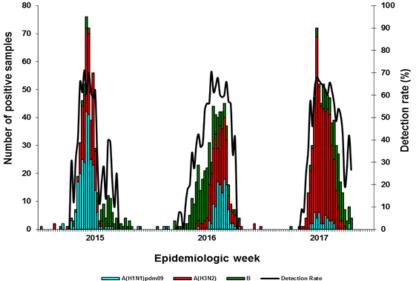
Red Cross Hospital and Mitchell's Plain Hospital- urban

Influenza surveillance-influenza like illness (viral watch), 1984-2017


Twenty-five Years of Outpatient Influenza Surveillance in South Africa, 1984–2008



Influenza seasons, South Africa 1984-2017


Predominant circulating strain

Variations in season

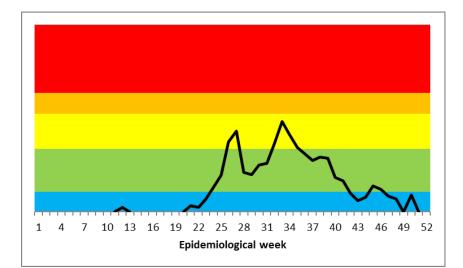
Influenza detections by type & subtype, influenza-like illness, South Africa 2015-2017

COMMUNICABLE DISEASES

Measures to determine intensity and severity of the South African influenza season

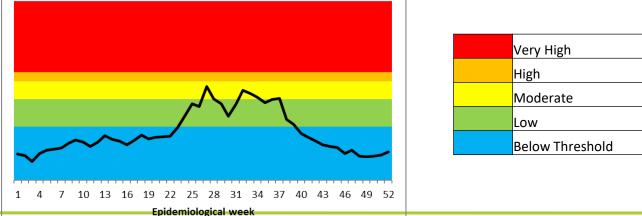
MEM Thresholds

- Thresholds set using up to 10 years historical data
- Used 40th, 90th & 97.5th percentiles
 - Below seasonal threshold
 - Low activity (>seasonal threshold, <40%)
 - Moderate activity (≥40%, but <90%)
 - High activity (≥90%, but <97.5%)</p>
 - Very high activity (≥97.5%)
- Transmissibility
 - Influenza detection rates for ILI- private practitioners (viral watch) & public health clinics
- Severity
 - Influenza detection rates for National syndromic surveillance for pneumonia (NSSP) & proportion hospitalised in Respiratory consultation and hospitalisations (RCHS)
- Impact on the healthcare system
 - 1

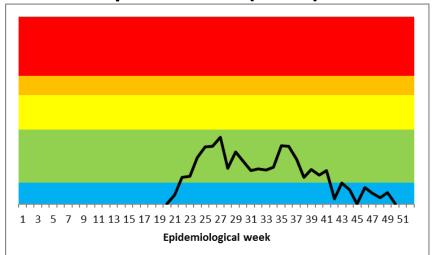


2017 Season: Thresholds based on 2012-2016 data: Transmissibility

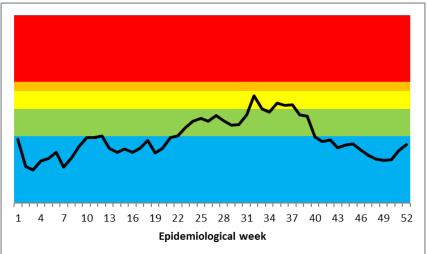
ILI – Viral watch (Private practitioners

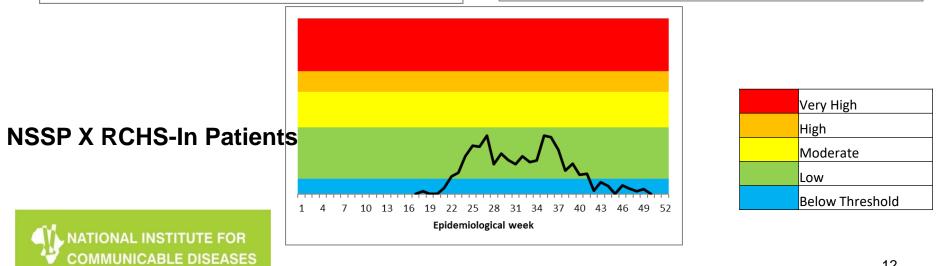

ILI -Public health clinics

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 Epidemiological week

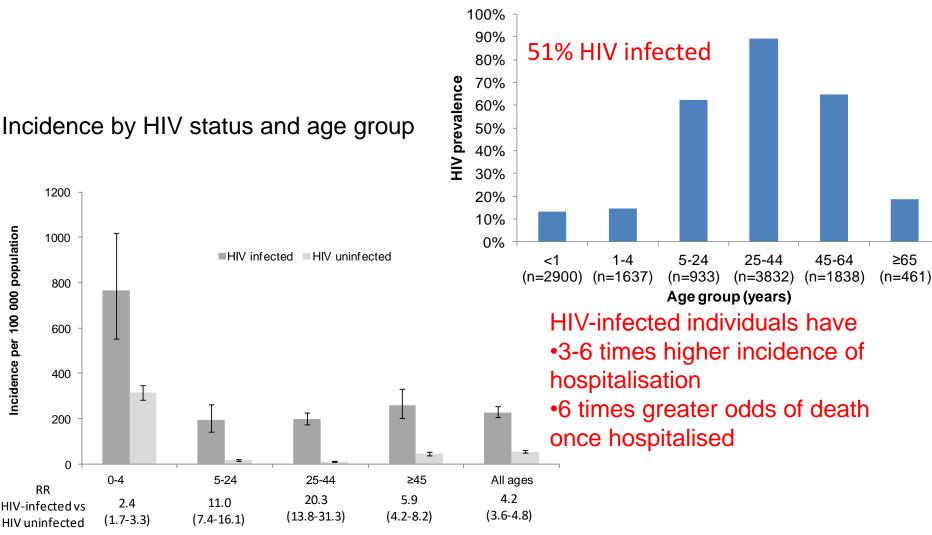

Respiratory consultations and hospitalisation: Out Patients

NATIONAL INSTITUTE FOR COMMUNICABLE DISEASES Division of the National Health Laboratory Service




2017 Season: Thresholds based on 2012-2016 data: Severity of disease

National syndromic surveillance for pneumonia (NSSP)


Respiratory consultations and hospitalisation (RCHS) – In Patients

BURDEN AND RISK GROUPS FOR SEVERE INFLUENZA

Patients with influenza-associated acute lower respiratorytract infection (ALRI), South Africa, 2009-2011

Age group (years)

Cohen et al Emerging Infectious Diseases 2014

HIV prevalence by age group

Mortality Associated With Seasonal and Pandemic Influenza and Respiratory Syncytial Virus Among Children <5 Years of Age in a High HIV Prevalence Setting—South Africa, 1998–2009

Stefano Tempia,^{1,2,3} Sibongile Walaza,³ Cecile Viboud,⁴ Adam L. Cohen,^{1,2} Shabir A. Madhi,^{3,5,6} Marietjie Venter,^{3,7} Johanna M. McAnerney,³ and Cheryl Cohen^{3,8}

Highest rate of influenza-associated mortality in<1 year HIV-infected ~12 times more likely to die of influenza

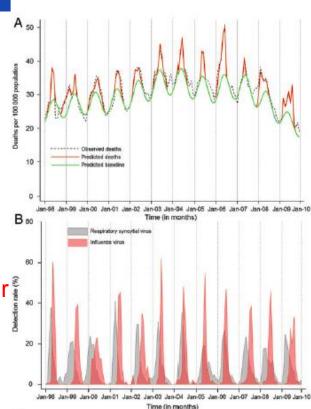


Table 4. Estimated Seasonal Influenza and Respiratory Syncytial Virus Mean Annual Associated Deaths and Relative Risk for Mortality Due to HIV Infection in Children <5 Years of Age in South Africa, 1998–2009^a

MAJOR ARTICLE

			Mean Annu	ual Excess Deaths				
Total		HIV-P	HIV-Positive		HIV-Negative			
Cause of Death	No., Mean (95% Cl)	Rate ^b , Mean (95% CI)	Percentage Mortality Over Model Baseline, Mean (95% Cl)	No., Mean (95% Cl)	Rate ^b , Mean (95% Cl)	No., Mean (95% Cl)	Rate ^b , Mean (95% CI)	Relative Risk (HIV- Positive vs HIV- Negative) (95% CI)
Seasonal influenza virus								
All respiratory								
<1 y	240 (117-368)	22 (11-34)	4 (2-7)	72 (33–110)	162 (79-246)	168 (83-257)	16 (8–25)	10.1 (8.7–11.7)
1–4 y	212 (110-313)	5 (2-7)	9 (7-11)	71 (36–104)	52 (28-78)	141 (73-208)	3 (2-5)	15.4 (11.2-21.1)
<5 y	452 (227-681)	8 (4–13)	5 (4–8)	143 (69–214)	83 (42–123)	309 (157–466)	6 (3–9)	11.5 (9.6–12.6) ^c

Incidence rates, incident rate ratios and case-fatality ratios among children <6 months of age hospitalised with influenza-associated severe acute respiratory illness (SARI), in Soweto, South Africa, 2010-2011

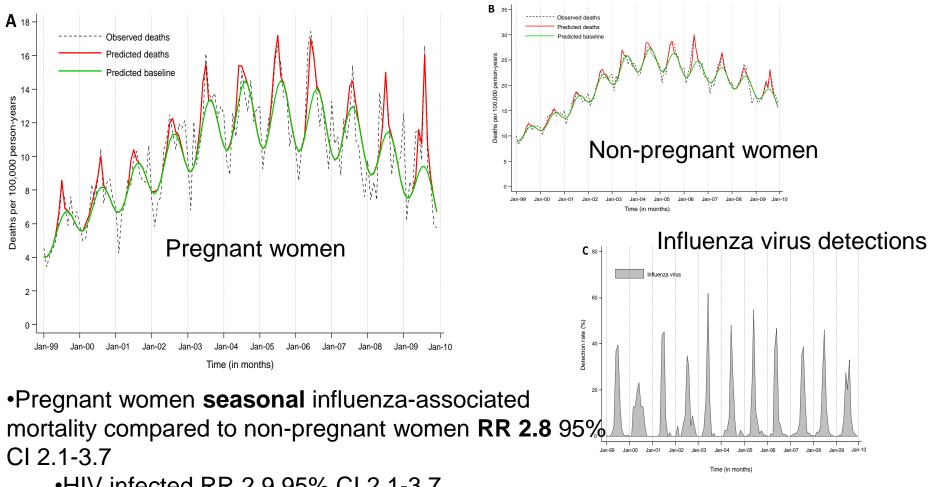
Organism	Incidence rates per 100 000 population	Incidence rate ratio (IRR)	CFR n/N (%)	OR
нии	412 (325-515)	Reference	1/64 (2)	Reference
HEU	503 (354-693)	1.2 (0.8-1.8)	2/33 (6)	4.1 (0.4-46.6)
HIV infected	2516 (1300-4394)	6.1 (3.0-11.3)	2/10 (20)	15.8 (1.3-193.9)

HUU – HIV unexposed uninfected, HEU – HIV exposed uninfected, HI – HIV infected CI – confidence interval

Cohen C et al Pediatrics 2016

Clinical Infectious Diseases

MAJOR ARTICLE

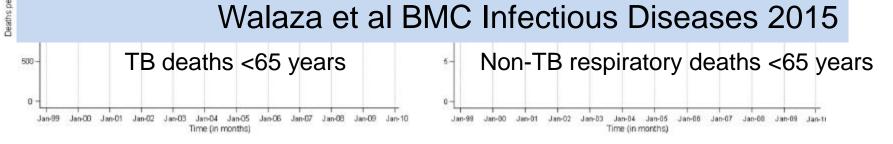


In- and Out-of-hospital Mortality Associated with Seasonal and Pandemic Influenza and Respiratory Syncytial Virus in South Africa, 2009–2013

Cheryl Cohen,^{1,2} Sibongile Walaza,^{1,2} Florette K. Treurnicht,^{1,2} Meredith McMorrow,^{3,4,5} Shabir A. Madhi,^{1,2,6} Johanna M. McAnerney,¹ and Stefano Tempia^{3,4}

- Estimated 11800 annual seasonal influenza-associated deaths in South Africa
- Influenza accounts for~ 4% of respiratory deaths
- Highest burden of influenza-associated all cause-mortality in ≥75 years
- Increased mortality in <5 years and 20-64 years

Mortality Associated with Seasonal and Pandemic Influenza among Pregnant and Non-Pregnant Women of Childbearing Age in a High HIV Prevalence Setting – South Africa, 1999-2009


•HIV infected RR 2.9 95% CI 2.1-3.7
•HIV-uninfected RR 2.4 95% CI 2.1-2.7
•In 2009 pandemic RR 3.2 95% CI 2.3-4.1

Tempia et al. CID 2015

Excess Mortality Associated with Influenza CONTINUE AMONG TUBERCULOSIS Deaths in South Africa, 1999–2009

Sibongile Walaza^{1,4}*, Cheryl Cohen^{1,4}, Ananta Nanoo¹, Adam L. Cohen^{2,3}, Johanna McAnerney¹, Claire von Mollendorf^{1,4}, Jocelyn Moyes^{1,4}, Stefano Tempia^{1,2,3}*

- Influenza-associated PTB deaths
 - 5 x greater than non-TB respiratory deaths in HIV infected (RR 5.2 95%CI 4.6-5.9)
 - 60 x greater than non-TB respiratory deaths in HIV uninfected
 Individual level data supportive.
- On multivariable analysis, patients co-infected with tuberculosis and influenza as compared to patients with tuberculosis only were at increased risk of death (aRRR 3.1, 95% CI 1.1-8.9).
 Walaza et al BMC Infectious Diseases 201

Factors associated with death among hospitalised individuals aged ≥15 years with severe respiratory illness testing tuberculosis positive at two sentinel surveillance sites, South Africa, 2010-2016 (n=1075)

Characteristics		Case fatality rate	Adjusted odds ratio (95% CI)	P value
Age group	15-24	8/129 (6)	1	
	25-44	69/656 (11)	1.5 (0.7-3.3)	0.286
	45-64	32/258 (13)	1.8 (0.8-3.9)	0.181
	≥65	7/36 (19)	3.6 (1.2-11)	0.026
HIV status	Negative	20/168 (12)	1	
	Positive	87/848 (10)	0 .9 (0.5-1.6)	0.756
Influenza infection	Negative	108/1033 (10)	1	
	Positive	8/42 (19)	2.3 (1.1-5.2)	0.045
Duration of symptoms prior admission	≤7 days	20/258 (8)	1	
	> 7 days	94/786 (12)	1.5 (0.9-2.5)	0.114

Walaza et al. In preparation

Factors associated with death among hospitalised individuals aged ≥15 years with severe respiratory illness testing influenza positive at two sentinel surveillance sites, South Africa, 2010-2016 (n=232)

Characteristics		Case fatality rate	Adjusted odds ratio (95% CI)	P value
Age group	15-24	1/19 (5)	1	
	25-44	8/131 (6)	1.0 (0.1-8.9)	0.989
	45-64	6/57 (10)	2.5 (0.3-24.2)	0.417
	≥65	3/25 (12)	5.1 (0.4-65.9)	0.210
HIV status	Negative	4/66 (6)		
	Positive	14/156 (9)	2.0 (0.5-8.8)	0.337
Tuberculosis	No	10/190 (5)	1	
	Yes	8/42 (19)	4.5 (1.5-13.2)	0.007
Duration of symptoms prior admission	≤7 days	6/109 (5)	1	
	> 7 days	12/120 (10)	1.6 (0.6-4.7)	0.355

Walaza et al. In preparation

VACCINE EFFECTIVENESS

Effectiveness of seasonal influenza vaccine

- Since 2005 data collected on vaccine history
 - Vaccine coverage very low in South Africa
- Test-negative case control studies were conducted amongst patients enrolled as part of the Viral Watch programme (ILI in private practitioners) to estimate VE.
 - Patients in whom influenza was detected were considered cases and those who tested negative for influenza were unmatched controls
 - Only specimens collected during the annual influenza season were included in the VE analysis.
 - Patients who met the ILI case definition, had a known influenza vaccine history, and were 6 months or older were included in the VE analysis.

Vaccine receipt and vaccine effectiveness by influenza type and subtype adjusted for age, underlying medical condition & timing within season: 2010-2017

Year	Predominant circulating strain n/N(%)		Vaccine effectiveness Confidence interval (95%)
2010	Influenza B	310/585 (53)	48.2 (13.8, 68.8)
2011	A(H1N1)pdm09	561/698 (80)	44.0 (12.1, 64.3)
2012	A(H3N2)	360/586 (61)	22.8 (-29.7, 54.1)
2013	A(H1N1)pdm09	539/797 (67)	77.8 (49.0, 90.3)
2014	A(H3N2)	335/473 (71)	17.9 (-76.8, 61.9)
2015	A(H1N1)pdm09	251/490 (51)	61.2 (13.8, 82.5)
2016	A(H3N2) Influenza B	207/523 (40) 202/523 (39)	18.1 (-54.9, 56.7)
2017	A(H3N2)	481/653 (74)	33.82 (-10.5, 60.4)

Influenza Epidemiology and Vaccine Effectiveness among Patients with Influenza-Like Illness, Viral Watch Sentinel Sites, South Africa, 2005–2009

Genevie M. Ntshoe¹*, Johanna M. McAnerney², Stefano Tempia³, Lucille Blumberg¹, Jocelyn Moyes², Amelia Buys², Dhamari Naidoo⁴, Marietjie Venter², Terry Besselaar⁴, Barry D. Schoub⁵, Bernice N. Harri: Cheryl Cohen²*

1 Division of Public Health Surveillance and Response, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, So Africa, 2 Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, So Africa, 3 Influenza Division, United States Centers for Disease Control and Prevention, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa, 4 World Health Organisation, Geneva, Switzerland, 5 Centre for Vaccines and Immunology, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa, 6 School of Health Systems and Public Health, University of Pretoria, Pretoria, Pretoria, South Af

DOI: 10.1111/irv. 12305 www.influenzajournal.com

Original Article

Effectiveness and knowledge, attitudes and practices of seasonal influenza vaccine in primary healthcare settings in South Africa, 2010–2013

Johanna M. McAnerney,^a Sibongile Walaza,^a Adam L. Cohen,^{b,c} Stefano Tempia,^{a,b,c} Amelia Buys,^a Marietjie Venter,^a Lucille Blumberg,^a Jazmin Duque,^{b,d} Cheryl Cohen^a

^aNational Institute for Communicable Diseases (NICD) of the National Health Laboratory Services (NHLS), Johannesburg, South Africa. ^bU.S. Centers for Disease Control and Prevention, Atlanta, GA, USA. ^cU.S. Centers for Disease Control and Prevention, Pretoria, South Africa. ^bBattelle Atlanta, Atlanta, GA, USA.

Correspondence: Johanna M. McAnerney, National Institute for Communicable Diseases, Private Bag X4, 2131 Sandringham, South Africa. E-mail: jomca@nicd.ac.za

Accepted 26 January 2015. Published Online 20 February 2015.

DOI:10.1111/irv.12314 www.influenzajournal.com

Short Article

Evaluation of influenza vaccine effectiveness and description of circulating strains in outpatient settings in South Africa, 2014

Johanna M. McAnerney,^a Florette Treurnicht,^a Sibongile Walaza,^{a,b} Adam L. Cohen,^{c,d} Stefano Tempia,^{a,c,d} Senzo Mtshali,^a Amelia Buys, ^a Lucille Blumberg,^a Cheryl Cohen^{a,b}

^aNational Institute for Communicable Diseases (NICD), National Health laboratory services (NHLS), Johannesburg, South Africa. ^bSchool of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. ^cU.S. Centers for Disease Control and Prevention, Atlanta, GA, USA. ^dU.S. Centers for Disease Control and Prevention – South Africa, Pretoria, South Africa.

Correspondence: Johanna M. McAnerney, National Institute for Communicable Diseases, Private Bag X4, 2131 Sandringham, South Africa. E-mail: jomca@nicd.ac.za

SHORT REPORT

WILEY

Estimating vaccine effectiveness in preventing laboratoryconfirmed influenza in outpatient settings in South Africa, 2015

Johanna M. McAnerney¹ | Sibongile Walaza¹ | Stefano Tempia^{1,2,3} | Lucille Blumberg¹ | Florette K. Treurnicht¹ | Shabir A. Madhl^{1,4} | Ziyaad Valley-Omar^{1,5} | Cheryl Cohen¹

¹National Health Laboratory Services (NHL5), National Institute for Communicable Diseases (NICD), Johannesburg, South Africa ²Influerza Division, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA

³Influenza Program, U.S. Centers for Disease Control and Prevention, Pretoria, South Africa
⁴Faculty of Health Sciences, Medical

Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Trivalent seasonal influenza vaccine effectiveness during the 2015 season in South Africa was assessed using a test-negative case control study design. Influenza A(H1N1) pdm09 was the dominant circulating strain. Overall influenza vaccine coverage was 3.2% (29/899). The vaccine effectiveness estimate, against any influenza virus infection, adjusted for age, underlying conditions and timing within season was 46.2% (95% CI: -23.5 to 76.5), and 53.6% (95% CI: -62.6 to 80.3) against influenza A(H1N1) pdm09.

GENETIC CHARACTERISATION OF INFLUENZA VIRUSES AND ANTIVIRAL RESISTANCE

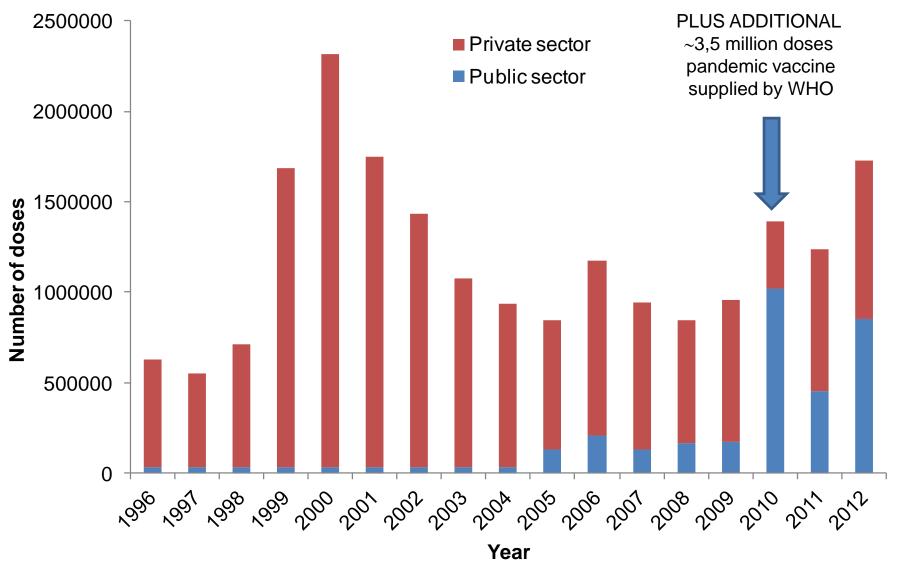
Genetic characterisation of influenza viruses and antiviral resistance

- –A(H1N1)pdm09 strains from 2017 were in sub-lineage 6B.1
- All A(H3N2) strains were within the genetic subgroup 3C.2al
- Influenza B viruses sequenced grouped predominantly with B/Yamagata lineage viruses
- No genetic mutations associated with reduced susceptibility to oseltamivir was observed

National influenza policy

Goals of the National Influenza Policy

- Reduce influenza transmission and disease
- Establish sustainable influenza surveillance programme
- Ensure security of supply for seasonal and pandemic influenza vaccines
- Ensure national influenza epidemic and pandemic preparedness
- Ensure appropriate treatment and care for individuals infected with influenza
- Generate an evidence base for rational decision making related to influenza control and prevention activities
- Promote studies on influenza at the Human-Animal Interface


National Influenza Policy and Strategic Plan

2017 to 2021

http://www.health.gov.za/index.ph p/component/phocadownload/cate gory/339-national-influenza-policy-#

Annual number of influenza vaccine doses distributed, South Africa, 1996-2012

Population 1996 - 40,5 million

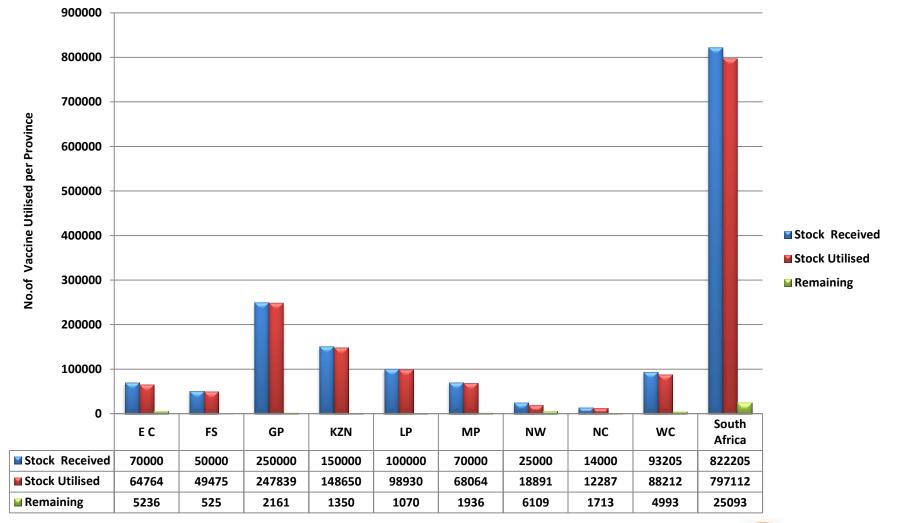
Population 2011 - 51.7 million

Groups recommended for influenza vaccination

- Pregnant women irrespective of the stage of pregnancy, or postpartum (within 2 weeks after delivery)
- 2. HIV infected individuals
- 3. Individuals with underlying medical conditions (including tuberculosis)
- 4. Persons over the age of 65 years

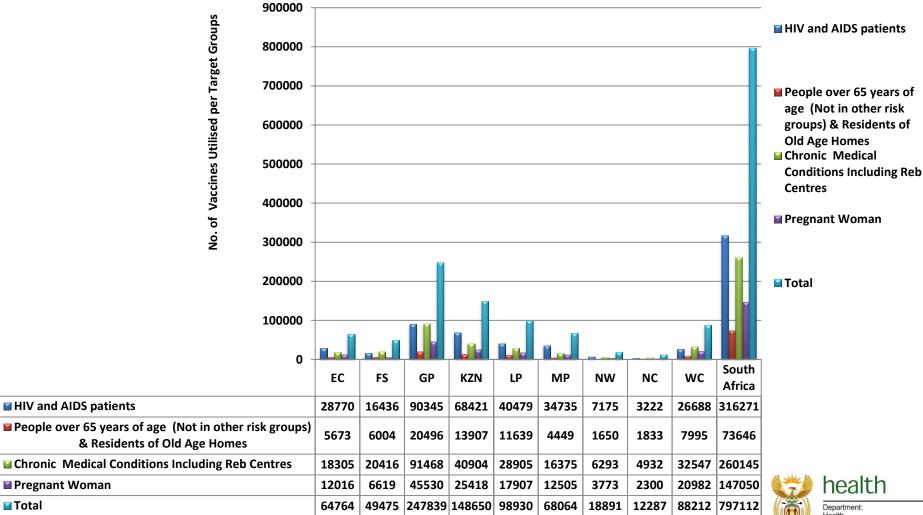
Other groups that would benefit

- 1. Healthcare workers
- Residents of old-age homes, chronic care and rehabilitation institutions. individual who are morbidly obese (BMI≥40 kg/m²)
- 3. Adults and children who are family contacts of individuals at high-risk4. Any persons wishing to protect themselves from the risk of contracting influenza


Influenza guidelines available on NICD website: www.nicd.ac.za/

Numbers of individuals in groups targeted for influenza vaccination in South Africa, 2011

Target group	Number
Children ≤5 years	5 189 528
Adults ≥65 years	2 538 955
All pregnant women	852 831
Pregnant women (HIV-uninfected)	595 276
Pregnant women (HIV-infected)	257 555
HIV-infected (5-64 years, not pregnant)	5 023 017
Tuberculosis and without HIV infection (5-64 years)	138 953
Specific high-risk underlying conditions (5-64 years)	6 643 032
Health care workers	72 000
TOTAL	20 458 316


PARADOX: Many more in risk groups than available doses

Influenza utilization by province, Department of Health vaccination campaign, South Africa 2017

Influenza vaccination by target groups, Department of Health vaccination campaign, 2017

🖬 Total

Health REPUBLIC OF SOUTH AFRICA

Influenza

NICD Recommendations for the diagnosis, prevention, management and public health response

http://www.nicd.ac.za/wp-content/uploads/2017/03/Influenza-guidelinesfinal_24_05_2017.pdf

Conclusion

- Established surveillance for influenza
- Robust data for burden estimates and risk groups
- Data to guide prioritisation for influenza vaccination available
- Influenza policy and guidelines in place
- Data to assess impact of influenza in health systems not available
- Influenza vaccine cost effectiveness data ?

THANK YOU

Department: Health REPUBLIC OF SOUTH AFRICA

