

XI International Symposium for Latin American experts

Enteric vaccines Progress and challenges

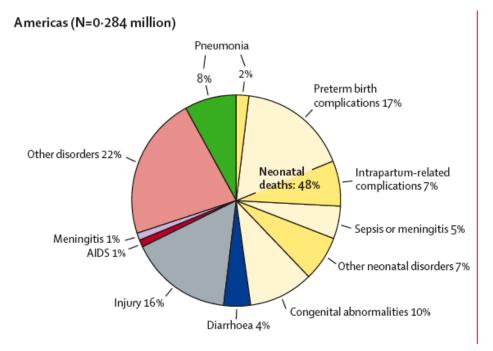
Rodolfo Villena, MD Pediatric Infectious Diseases Hospital de niños Dr. Exequiel González Cortés Universidad de Chile Clínica Las Condes

Disclosures

- Speaker at sponsored training sessions/meetings for healthcare workers

 MSD
- Sponsored attendance to scientific conferences
 - Pfizer

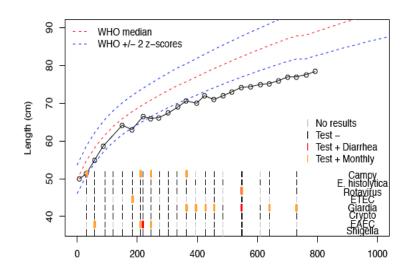
Outline


- Epidemiology of enteric pathogens
- Vaccine research and development
- Lessons learned from real experiences with enteric vaccines
- Challenges and gaps for enteropathogen vaccines
- Conclusions

Global threat of AGE

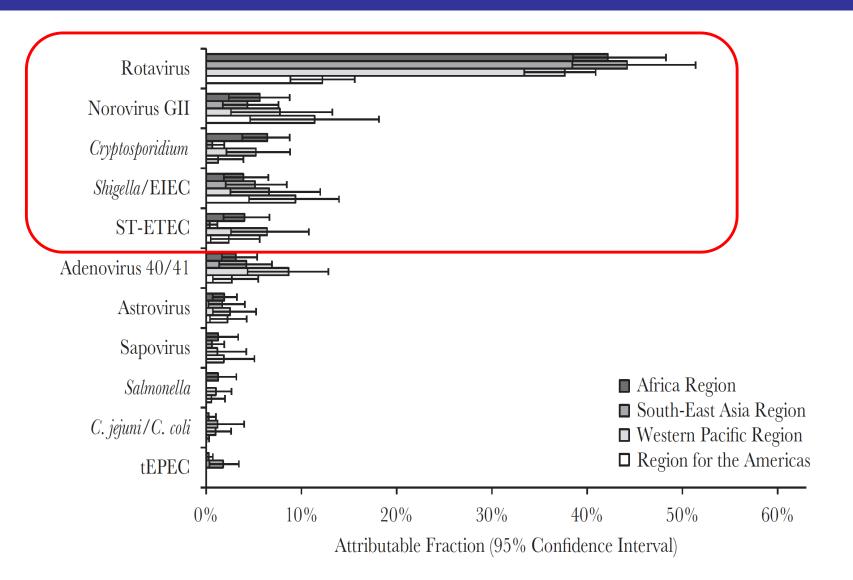
Enteric pathogens: a threat to public health

- >1 million deaths per year to diarrhea across all age groups
- 760,000 diarrhoea deaths annually in children <5 yoa
- Focus in less developed countries
- 4% of total global DALYS
 - 10 countries with largest burden of diarrhoea deaths

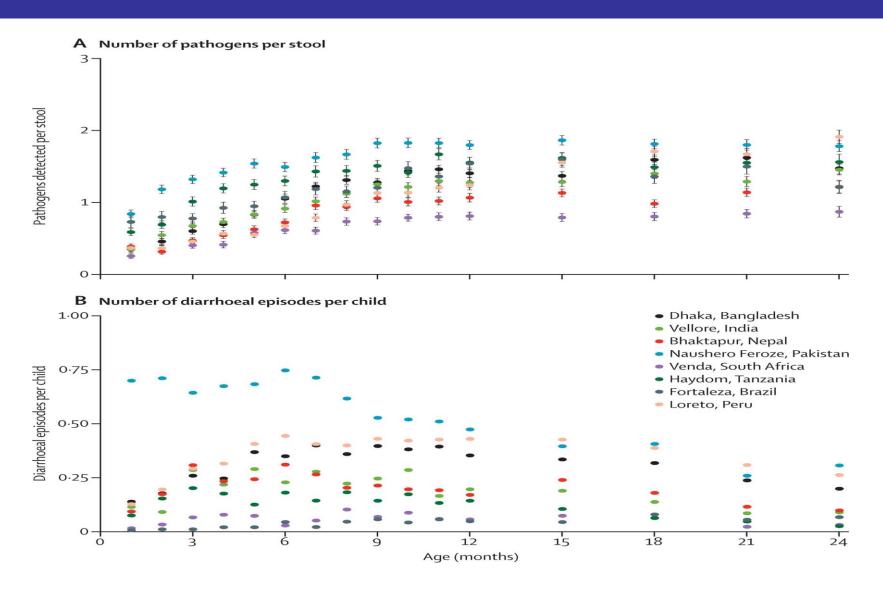

Despite reductions in mortality, diarrhoeal morbidity remains high, and the condition remains a major burden in LMICs

• 64% of global diarrheal deaths

Non-severe diarrhoeal episodes are of public health importance



- Repeated enteric infections → long term sequelae and diseases
 - poor growth, impaired cognitive development, enteropathy
- Antibiotic resistance development
- Post-acute illness mortality and growth impairment

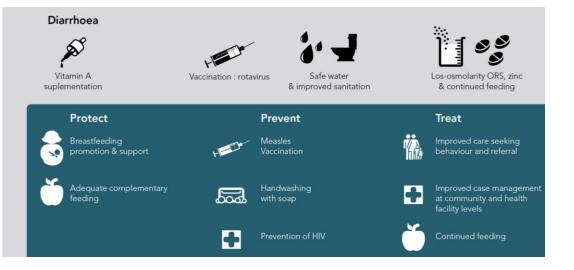


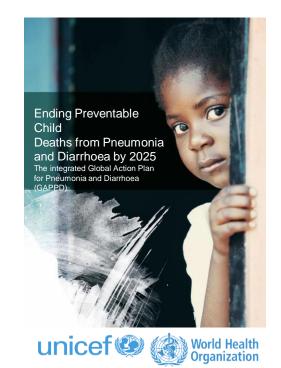
- Brazilian cohorts in 4–10y FU
 - Correlation among burden of diarrhoea and impairment of:
 - Visual-motor coordination
 - Hearing short-term memory and information processing
 - Lower scores on the Test of Non-Verbal Intelligence-III and the Wechsler Intelligence Scale for Children

Etiology of acute watery diarrhea remains poorly characterized

Incidence of diarrhoea and number of pathogens per stool increase during the first year of life

Platts-Mills J., et al The Lancet Global Health, Vol 3, Issue 9, 2015 Pages e564-e575


Prevention strategies: progress on enteric vaccines


Goals for 2025

Integrated Global Action Plan for Pneumonia and Diarrhoea

For children under 5 years of age

- Reduce mortality from diarrhoea to <1/1,000 LB
- Reduce the incidence of severe diarrhoea by 75% compared to 2010 levels
- Reduce by 40% the global number who are stunted compared to 2010 levels

Main policies to address

(a) improved water and sanitation

(b) vaccination

WHO Product Development for Vaccines Advisory Committee (PDVAC)

5th version

Vaccines for enteric pathogens

A	bout us Y Heal	th topics ∽	News ~	Countries ~	E				
		Immunizatio	n, Vaccines and	d Biologicals					
	Immunization, Vaccines and Biologicals		ct Development PDVAC) meetin	t for Vaccines Advis	sory				
	Vaccines and diseases	26-27 June 2018, Starling Hotel, Geneva, Switzerland							
	Global Vaccine Action Plan	Background and	executive summary						
Þ	WHO policy recommendations	 Background On 26-28 June, WH 	O's Product Developmen	t for Vaccines Advisory Commit	tee				
Þ	National programmes and systems	discussed in vaccine	e and monoclonal antiboo	eeting. Over two days, progress dy development for the 10 previ eficiency Virus, (HIV), Tubercul	ously				
Þ	Monitoring and surveillance	(TB), Malaria, Influenza, Respiratory syncytial virus (RSV), Group B Streptococcus (GBS), Group A Streptococcus (GAS), Herpes Simplex Virus (HSV), Enterotoxigenic							
	Quality, safety and standards	E.coli (ETEC) and S	higella spp), and also for	three new pathogens with can	didates				
•	Research and development	 in, or approaching, clinical development (Neisseria gonorrhoeae (GC), Chikungunya (CHIKV) and Non-Typhoidal Salmonella (NTS)). Several cross-cutting topics were considered, such as the potential role of vaccines in addressing antimicrobial resistance (AMR) and two new vaccine product development initiatives, namely Tot 							
	Research by disease								
	Implementation research	Systems Effectiveness (TSE) and the Vaccine Innovation Prioritization Strategy (VIPS), were presented. The third day consisted of a closed session with the PDVAC							
	Advisory committees	members to delibera	ate over recommendation	IS.					

http://www.who.int/immunization/research/meetings_workshops/PDVAC_executive_summary_june_2018.pdf?ua=1

Shigella vaccine

- Pipeline: oral and parenteral
- Advanced candidates elicit responses to the Shigella Oantigen and have data from phase II in CHIM
- In May 2018, WHO convened a workshop to evaluate the role of CHIMs in the pathway to licensure and policy recommendation
 - Travelers' vaccine approach
 - Pathway for policy recommendation LMICs will require demonstration of safety and efficacy in young children

Enterotoxigenic E. coli vaccine

- ETVAX: oral, whole cell formalin- inactivated
 - 5 to 10 years from licensure
 - Phase 2b efficacy study in adult travellers
 - Safety and immunogenicity in cohorts aged 6–11 months
 - Focus expecting to reduce severe diarrhoea → ETEC, severity scores
- TSWC: trivalent vaccine
 - Includes formalin-killed Shigella flexneri 2a and 3a and Shigella sonnei

Hosangadi D, et al Vaccine. 2017 Oct 11, Fleckenstein FM, JID 2017:216, July http://www.who.int/immunization/research/meetings workshops/PDVAC executive summary june 2018.pdf?ua=1,

Typhoid/NTS vaccine

Table 1 Characteristics of different typhoid vaccines^{15, 36}

Tableau 1 Caractéristiques des différents vaccins antityphoïdiques^{15, 36}

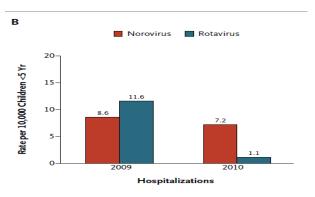
	Typhoid conjugate vaccine (Typbar-TCV®) – Vaccin antityphoïdique conjugué (Typbar-TCV®)	Unconjugated Vi polysaccharide vaccine – Vaccin polyosidique Vi non conjugué	Live attenuated Ty21a vaccine – Vaccin vivant atténué Ty21a
Composition	25 μg of purified Vi capsular polysaccharide conjugated to TT – 25 μg de polyoside capsulaire Vi purifié, conjugué à l'anatoxine tétanique	25 μg of purified Vi capsular polysaccharide – 25 μg de polyoside capsulaire Vi purifié	2 to 6 × 109 CFU of Ty21a (attenuated Ty2 strain of <i>S</i> . Typhi) – 2 à 6 × 109 UFC de Ty21a (souche Ty2 atténuée de <i>S</i> . Typhi)
Route, dose – Voie d'administration, posologie	IM, 1 dose – Intramusculaire, 1 dose	IM/SC, 1 dose – Intramusculaire/sous- cutanée, 1 dose	Oral, 3 (4 in USA and Canada) doses every second (alternate) day – Orale, 3 doses (4 aux États-Unis d'Amérique et au Canada) administrées 1 jour sur 2
Presentation – Présentation	Liquid – Liquide	Liquid – Liquide	Enteric- coated capsules – Gélules gastrorésistantes
Recommended target age for vaccination – Âge cible recommandé pour la vaccination	Adults and children ≥6 months to ≤45 years of age – Adultes et enfants âgés de ≥6 mois à ≤45 ans	Adults and children ≥2 years of age – Adultes et enfants âgés de ≥2 ans	Adults and children older than 6 years – Adultes et enfants de plus de 6 ans

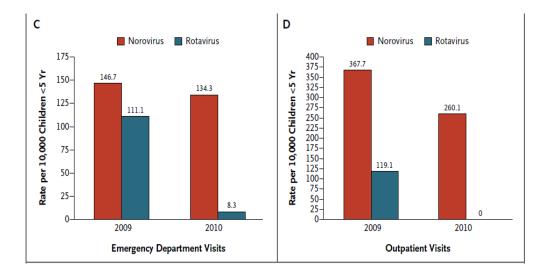
- **NTS Vaccines**: trivalent vaccine will be needed
- 2 candidates are expected to enter phase 1 studies
- Combination with the licensed typhoid vaccine ?

http://www.who.int/immunization/research/meetings_workshops/PDVAC_executive_summary_june_2018.pdf?ua=1

Cholera vaccine

Generic name – Dénomination commune	WC-rBS – WC-rBS	Modified bivalent WC – WC bivalent modifié
Trade name – Nom commercial	Dukoral® (first licensed in Sweden) – Dukoral® (première homologation en Suède)	mORCVAX [™] (licensed in Viet Nam), Shanchol [™] (licensed in India), Euvichol® (licensed in the Republic of Korea) – mORCVAX [™] (homologué au Viet Nam), Shanchol [™] (homologué en Inde), Euvichol® (homologué en République de Corée)
Target – Cible	O1 (Classical, El Tor – Ogawa and Inaba) Cholera toxin B subunit – O1 (classique, El Tor – Ogawa et Inaba) Sous-unité B de la toxine cholérique	O1 (Classical, El Tor – Ogawa and Inaba), and O139 No cholera toxin subunit – O1 (classique, El Tor – Ogawa et Inaba) et O139 Pas de sous-unité de la toxine cholérique
Regimen – Schéma vaccinal	2 doses given 1–6 weeks apart – 2 doses espacées de 1 à 6 semaines 3 doses for children aged 2–5 years – 3 doses pour les enfants âgés de 2 à 5 ans	2 doses given 14 days apart – 2 doses espacées de 14 jours
Age recommended for vaccination – Âge recommandé pour la vaccination	\geq 2 years – \geq 2 ans	mORCVAX [™] : ≥1 year – mORCVAX [™] : ≥1 an Others: ≥1 year – Autres: ≥1 an


- Vaccines should be used in areas with endemic cholera, in humanitarian crises with high risk of cholera, and during cholera outbreaks
- Encouraging development of improved new generation OCVs
 - higher efficacy in children, longer duration of protection, easy-to-deliver presentations


Weekly epidemiological record, no 34, 92, 477-500, 25 august 2017

Norovirus

Rotavirus vaccine deployment implication: an emergent new leader- *Norovirus*

United States

Original Studies		N	lumber of S	tudios	Mer	in Prevalence ((95% CI)
Norovirus in Latin America	Location	Total	Pre-RV Vaccine	Post-RV Vaccine	All	Pre-RV Vaccine	Post-RV Vaccine
Systematic Review and Meta-analysis	Overall	29	21	8		15% (12-19)	16% (12-22)
Miguel O'Ryan, MD,* Margarita Riera-Montes, MD, MSc, \dagger and Benjamin Lopman, PhD \ddagger	Community Outpatient Hospital	8 7 19	2 6 16	5 1 3	15% (11-21) 14% (10-19) 16% (12-21)		18% (14-23) 21% (15-27) 13% (4-26)

- Epidemiology of NoV is similar to rotavirus
- Prior infection plays a protective role against later infections

Payne D. N Eng J Med 2013; 368:1121-30; O'Ryan M., Pediatr Infect Dis J. 2017 Feb;36(2):127-134

Norovirus vaccine development process

- Phase IIb/III clinical studies in adults and paediatrics
 - Clinical proof of concept demonstrated in a human challenge model
 - Infants: similar to the rotavirus vaccine
 - Primarily protect against more severe infections
 - Adults specific target groups
 - Military personnel, individuals in confinement, general travelers and the elderly
- Bivalent candidate vaccine: GI.1 + GII.4
- Candidate should be able to protect against any emerging genotypes
- VLPs designed approach → cross-protection
 25 human genotypes

Pathway to norovirus vaccine

Human vaccine candidates against norovirus.

Antigens in the vaccine	Stage of development	Comments
Norovirus VLPs GI.1 and GII.4	Clinical: Phase I and II in adults completed, advancing to phase III trials in adults and children	Baculovirus expression system of VLPs. First delivered by intranasal route, and currently developed for intramuscular administration
Norovirus VLPs GI.1, GI.3, GII.4 and GII.12	Pre-clinical: <i>in vitro</i> and BALB/c mouse model	Baculovirus expression system, intramuscular administration. Triggers serum HBGA blocking antibodies
Norovirus VLPs GI.3 and GII.4 and Rotavirus rVP6	Pre-clinical: Immunogenic in BALB/c mouse model	Baculovirus expression system, intramuscular administration. Norovirus VLPs associated with rVP6 rotavirus nanotubes elicited higher titers of anti-Norovirus antibodies with higher blocking activity against binding to HBGAs than free VLPs alone
Norovirus VLPs GII.4 and Enterovirus 71	Pre-clinical: Immunogenic in BALB/c mouse model	Baculovirus expression system, intraperitoneal administration. Elicits production of HBGA blocking antibodies against GII.4 Norovirus and neutralizing antibodies against Enterovirus 71
Norovirus P-particles	Pre-clinical: Immunogenic in BALB/c mouse model and gnotobiotic pigs	High expression yield in E. coli system. Intranasal administration
Norovirus GII.4 P-particle enhanced by adjuvant FlaB	Pre-clinical: Immunogenic in BALB/c mice model	Expression in <i>E. coli</i> system. Administered by intranasal and sublingual route. Higher levels of response by intranasal administration. FlaB induces systemic and mucosal Th1 and Th2 responses
Norovirus, Hepatitis E and Astrovirus P-particles	Pre-clinical: Immunogenic in a BALB/c mouse model	Expression of recombinant fusion protein including P domain of the 3 viruses. Intranasal administration. Elicits a significant increase in titers of antibodies against the 3 viruses. High blocking activity against Norovirus binding to HBGAs
Virus replicon particles including Norovirus P domain	Pre-clinical: Replication <i>in vitro</i> model and immunogenic in BALB/c mouse model	Replication in eukaryotic cell lines and inoculation in mice by intranasal administration. Elicits a Th1 predominant response. Higher levels of seric IgG than Baculovirus expressed VLPs

Rotavirus

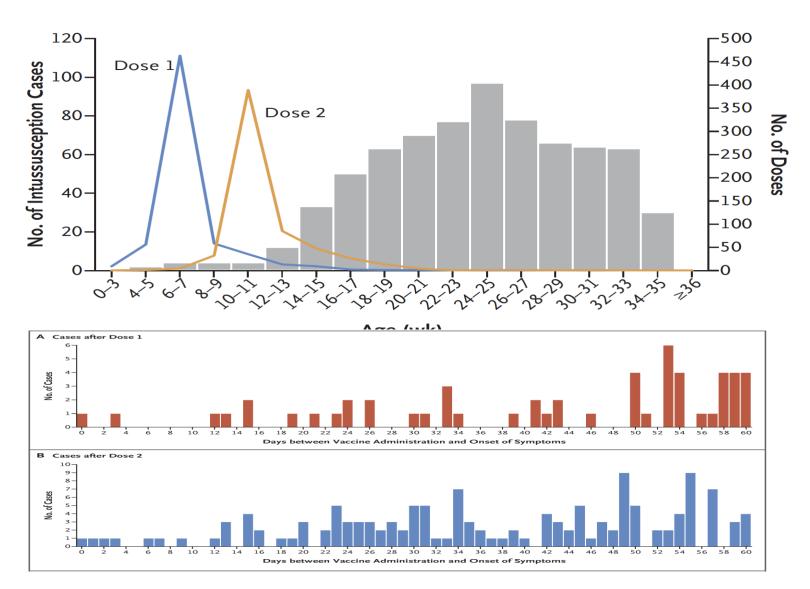
Rotavirus vaccines

	Internationally-available					
Name	Rotarix	RotaTeq				
Manufacturer, country	GlaxoSmithKline Biologicals, Belgium	Merck, USA				
Strain(s) present in vaccine	Attenuated human G1P[8] strain	Human-bovine reassortant strain with G1, G2, G3, G4, and P[8] proteins				
Presentation	 Liquid vaccine in oral, single-dose applicator Liquid vaccine in squeezable, polyethylene single-dose tube Lyophilized vaccine, reconstituted with calcium carbonate buffer and oral applicator 	Liquid vaccine in oral, squeezable tube				
Vaccine vial monitor (VVM) on label ¹⁵	Yes, VVM 14	None				
Storage requirements Route of administration	2 to 8° C, not frozen and protected from light Oral	2 to 8° C, not frozen and protected from light Oral				
Number of doses and schedule of administration	Two doses, given on same schedule as DPT vaccine	Three doses, given on same schedule as DPT vaccine				
Vaccine efficacy (95% Cl) against severe rotavirus gastroenteritis during the first year, developing country study location	61% (44 to 73%), South Africa and Malawi ³³	59% (40 to 72%), Ghana, Kenya, Mali, Bangladesh and Vietnam ³⁴				
Licensure and WHO prequalification ¹⁵ Price per vaccination course	Internationally licensed, Prequalified in 2007 From approximately US\$0.50 in 0 countries up to US\$185–\$226					

Rotavirus vaccines

Licensed for national markets							
Rotavac	Rotasiil	LLR	Rotavin-M1				
Bharat Biotech International Limited, India	Serum Institute of India Limited, India	Lanzhou Institute of Biological Products, China	Center for Research and Production of Vaccines, Vietnam				
Human G9, P[11] strain	Human-bovine reassortant pentavalent (G1-G4, G9) strain	Lamb G10P[12] strain	Human G1P[8] strain				
Liquid vaccine in single- and multi-dose vial. Liquid antacid buffer given before the vaccine	Lyophilized vaccine, reconstituted with calcium carbonate buffer	Liquid vaccine with buffer	Liquid vaccine in single-dose vial.				
Yes, VVM 2	Yes, VVM 30	None	None				
Frozen at $-20^\circ C \pm 5^\circ C$	Stable at 37°C for two years	2 to 8°C	Frozen at -20° C \pm 5 $^\circ$ C				
Oral	Oral	Oral	Oral				
Three doses, four weeks apart, beginning at 6 weeks of age	Three doses, four weeks apart, beginning at 6–8 weeks of age	One dose every year for three years between 2 and 35 months of age	The first dose from 6 weeks of age. The second dose after 1–2 months. Should be given before 6 months of age.				
56% (37 to 70%) Delhi, Pune and Vellore ¹⁶	67% (50–78%), Niger ¹⁸	Not available	Not available				
Licensed in India	Licensed in India	Licensed in China	Licensed in Vietnam				
US\$ 2.50 ²	US\$ 6.00 maximim ³	US\$ 24.00 ⁴	US\$ 17.60 ⁵				
	Bharat Biotech International Limited, India Human G9, P[11] strain Liquid vaccine in single- and multi-dose vial. Liquid antacid buffer given before the vaccine Yes, VVM 2 Frozen at -20° C \pm 5°C Oral Three doses, four weeks apart, beginning at 6 weeks of age 56% (37 to 70%) Delhi, Pune and Vellore ¹⁶	Bharat Biotech International Limited, IndiaSerum Institute of India Limited, IndiaHuman G9, P[11] strainHuman-bovine reassortant pentavalent (G1-G4, G9) strainLiquid vaccine in single- and multi-dose vial. Liquid antacid buffer given before the vaccineHuman-bovine reassortant pentavalent (G1-G4, G9) strainYes, VVM 2Yes, VVM 30Yes, VVM 2Yes, VVM 30Frozen at $-20^{\circ}C \pm 5^{\circ}C$ Oral Three doses, four weeks apart, beginning at 6 weeks of ageStable at $37^{\circ}C$ for two years and $40^{\circ}C$ for six months Oral Three doses, four weeks apart, beginning at 6 weeks of age56% (37 to 70%) Delhi, Pune and Vellore ¹⁶ 67% (50–78%), Niger ¹⁸ Licensed in IndiaLicensed in India	Bharat Biotech International Limited, IndiaSerum Institute of India Limited, IndiaLanzhou Institute of Biological Products, ChinaHuman G9, P[11] strainHuman-bovine reassortant pentavalent (G1-G4, G9) strainLamb G10P[12] strainLiquid vaccine in single- and multi-dose vial. Liquid antacid buffer given before the vaccineLyophilized vaccine, reconstituted with calcium carbonate bufferLiquid vaccine with bufferYes, VVM 2Yes, VVM 30NoneYes, vvM 2Yes, VVM 30NoneFrozen at -20°C ± 5°CStable at 37°C for two years and 40°C for six months Oral2 to 8°COralThree doses, four weeks apart, beginning at 6 weeks of ageG7% (50-78%), Niger ¹⁸ Not availableStewen in IndiaLicensed in IndiaLicensed in ChinaLicensed in China				

RV1 and RV5 post marketing studies


Table 2. Risk–benefit estimates of rotavirus disease and intussusception outcomes by country [†] .							
Country	Outcome	Rotavirus outcomes averted	Intussusception outcomes caused	Rotavirus outcome averted: intussusception outcome caused	Ref.		
Mexico	Hospitalizations	11,551	41	282:1	[24]		
RV1	Deaths	663	2	331:1			
Brazil	Hospitalizations	69,572	55	1265:1	[24]		
RV1	Deaths	640	3	213:1			
Australia	Hospitalizations	6528	14	466:1	[27]		
RV1 & RV5	Deaths	NR	NR	NR			
USA	Hospitalizations	53,444	35–166	322–1530:1	[52]		
RV1 & RV5	Deaths	14	0.1–0.5	28–134:1			
[†] Estimates based	on one vaccinated birth of	cohort to age 5 years.					

^TEstimates based on one vaccinated birth cohort to age 5 years. NR: Not reported.

Vaccines are safe (9 years experience) 1- 6 additional cases per 100,000 doses of vaccines

Expert Rev. Vaccines 13(11), 1339–1348 (2014)

African Intussusception Surveillance Network

Tate JE, et al N Engl J Med 2018;378:1521-8

Risk of intussusception after RV1 not higher than background risk in LIC

Table 2. Relative Incidence of Intussusception in the RiskPeriods after the First and Second Doses of MonovalentRotavirus Vaccine, February 2012 through December 2016.

Dose and Risk Period	No. of Cases	Relative Incidence (95% CI)*
Dose 1		
Days 1–7	1	0.25 (<0.001-1.16)
Days 8–21	6	1.01 (0.26–2.24)
Days 1–21	7	0.85 (0.35–1.73)
Dose 2		
Days 1–7	5	0.76 (0.16–1.87)
Days 8–21	16	0.74 (0.39–1.20)
Days 1–21	21	0.81 (0.49–1.22)

- 29 African countries had introduced RV by 2014,
- Preventing in 2017
 - 135,000 hospitalizations
 - 21,000 deaths
- Large health benefits in the absence of increased risk of intussusception after RV1 administration

Vaccine impact in the US

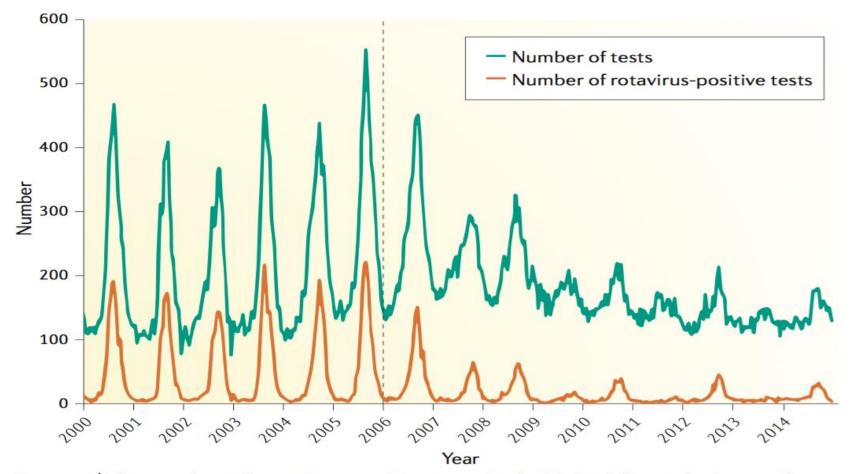
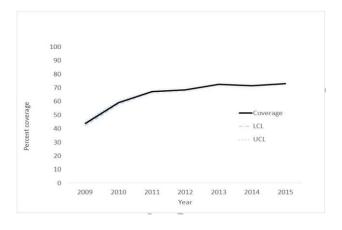
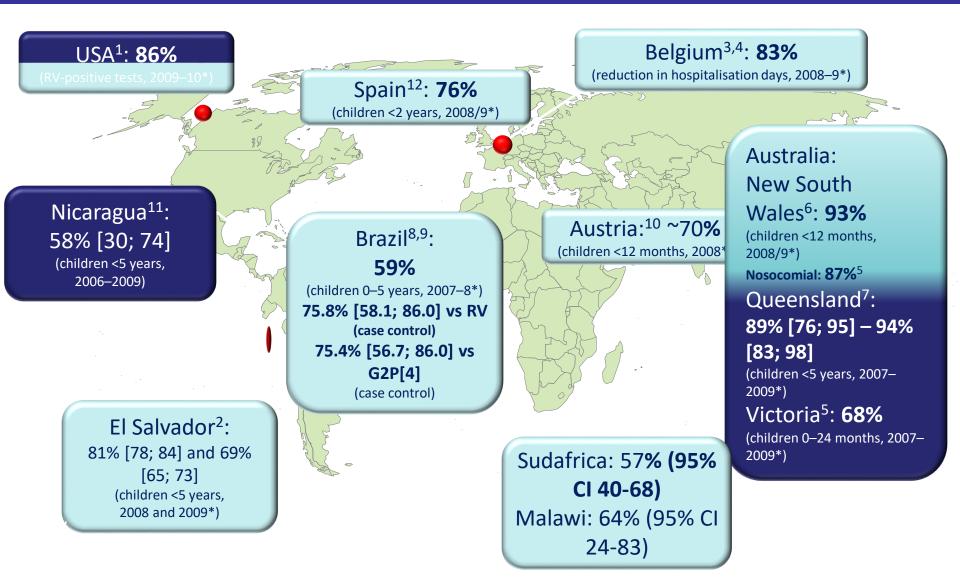


Figure 3 | The number of rotavirus-positive tests in the United States before and after vaccine introduction. These data are from 21 continuously reporting National Respiratory and Enteric Viruses Surveillance System laboratories, collected by

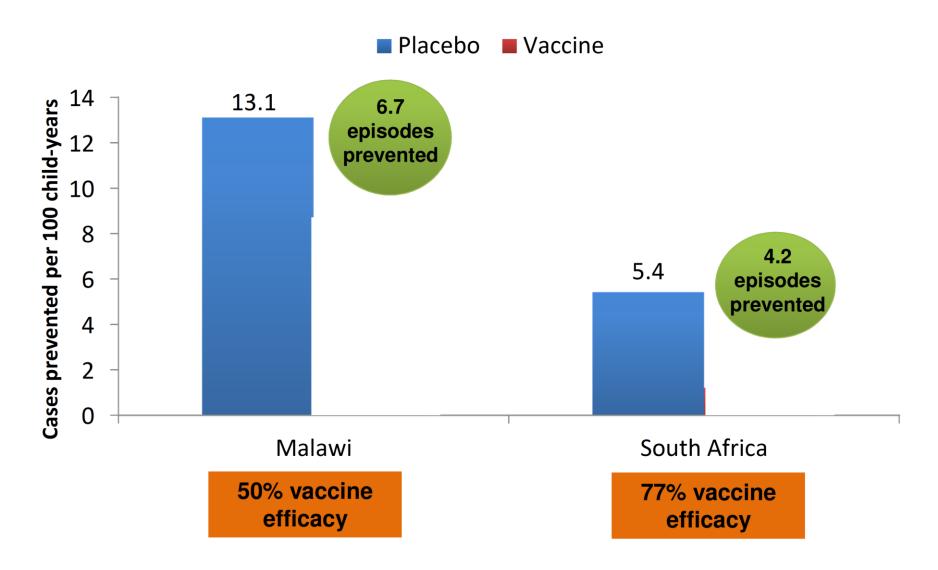

VE of RV5 and RV1 by clinical setting, USA

-	Ref	Pub. Year	Cases	Controls	OR (95% CI)	v	E (0)
RV5 studi	es						
Hospital							
	35	2010	15	13	← ↓ ↓	100	(72, 100
	47	2011	40	49	H	95	(48, 99
	41	2011	52	236	← → →	92	(48, 100
	38	2011	140	280	→ •••	92	(86, 96
	44	2013	130	372	⊢ •	86	(74, 91
	37	2013	30	73	← → ↓	97	(77, 100
	45	2015	96	433	H=H	83	(71, 90
Summary	_				+	89	(82, 93)
ED							
	47	2011	39	76	H	74	(16, 92
	38	2011	41	280	<u> </u>	81	(53, 92
	44	2013	229	1439	H	81	(70, 84
	37	2013	49	73	<u>⊢ • − −</u>	91	(67, 98
	45	2015	258	1684	Heri	77	(69, 83
Summary	0000	n <u>escosco</u>	115 11	economia.	•	79	(75, 83)
RV1 studi	es					9	6
Hospital							
	44	2013	22	34		- 32	(-156, 82)
	37	2013	30	140		. 98	(90, 100
	45	2015	27	148		84	(53, 94
Summary					-	75	(4, 93)
ED				_			
C104.	44	2013	38	121	—	78	(46, 91)
	37	2013	65	140		86	(67, 94
	43	2015	72	387	H •	79	(63, 87
Summary						81	(71, 87)
					-		
					F 1 1 1	_	
					Closerved Dutcome		

- Overall VE against hospitalization and ED visits
 - RV5: 84%
 - RV1: 83%

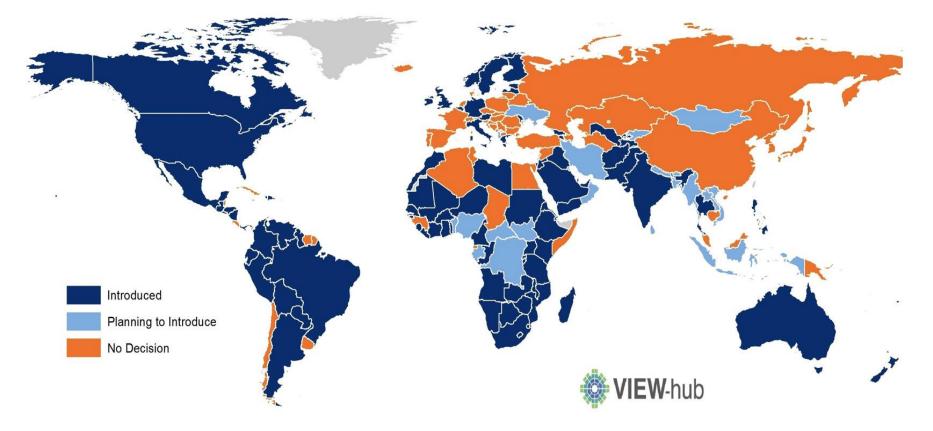

Coverage 73,2%

– Under optimal 80%



Pindyck T., et al Expert Review of Vaccines, DOI: 10.1080/14760584.2018.1489724

Global impact on AGE hospitalizations



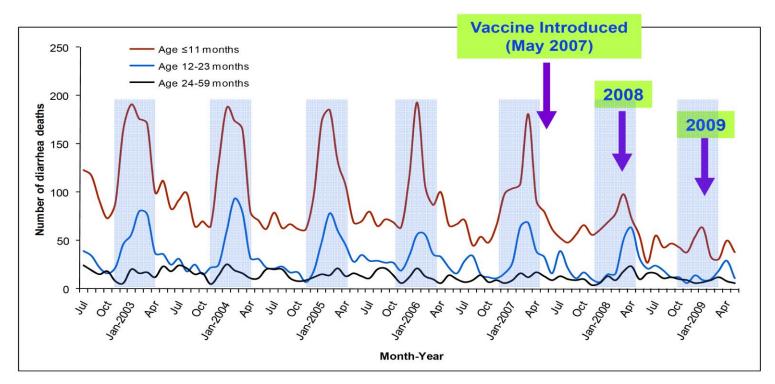
High burden settings: greater disease prevention

Worldwide rotavirus vaccine introduction status August 2018

Rotavirus Vaccine Introduction

Source: International Vaccine Access Center (IVAC), Johns Hopkins Bloomberg School of Public Health. VIEW-hub. www.view-hub.org.

RV5 and RV1 reduction in hospital admissions and emergency department visits, the frequency of diarrheal disease of any cause and rotavirus-related gastroenteritis


	а	Odds Ratio	Odds Ratio	
		SE Weight IV, Random, 95% C		
	1.3.1 RV1			
		275 11.3% 0.24 [0.14, 0.41]		
	de Palma 2010 -1.4271 0.20	· · · · · · · · · · · · · · · · · · ·		
Veläzquez et al. BMC Pediatrics (2017) 17:14		275 11.3% 0.24 [0.14, 0.41]		
DOI 10.1186/s12887-016-0771-y BMC Pediatrics	Patel 2013 -1.4697 0.18 Correia 2010 -1.4697 0.47		1	
	Correla 2010 -1.4697 0.47 Cotes-Cantillo 2014 -1.8326 0.70			
RESEARCH ARTICLE Open Access	Subtotal (95% CI)	65.5% 0.23 [0.19, 0.29]		
Efficacy cafety and effectiveness of	Heterogeneity: Tau ² = 0.00; Chi ² = 0.33, df = 5			
Efficacy, safety and effectiveness of	Test for overall effect: Z = 13.42 (P < 0.00001)			
licensed rotavirus vaccines: a systematic				
review and meta-analysis for Latin America	1.3.2 RV5			
	Patel 2009 -0.5798 0.26			
and the Caribbean	Patel 2012 -1.204 0.15 Subtotal (95% CI)	582 22.8% 0.30 [0.22, 0.41 34.5% 0.39 [0.21, 0.72]		
Raúl F. Velázquez ¹ , Alexandre C. Linhares ^{2*} , Sergio Muñoz ² , Pamela Seron ³ , Pedro Lorca ³ , Rodrigo DeAntonio ⁴	Heterogeneity: Tau ² = 0.15; Chi ² = 3.98, df = 1			
and Eduardo Ortega-Barria ⁴	Test for overall effect: $Z = 3.00$ (P = 0.003)	0 = 0.00), 1 = 70.0		
	Total (95% CI)	100.0% 0.27 [0.22, 0.34]	1 🔶	
	Heterogeneity: Tau ² = 0.02; Chi ² = 9.83, df = 7		0.01 0.1 1 10	100
	Test for overall effect: Z = 12.13 (P < 0.00001)		Favours protection Favours infection	
	Test for subgroup differences: Chi ² = 2.54, df =	$= 1 (P = 0.11), I^{2} = 60.7\%$		
	b	Odds Patio	Odde Patio	
	b Study or Subgroup Log[Odds Ratio]	Odds Ratio	Odds Ratio	
	Study or Subgroup log[Odds Ratio]	Odds Ratio SE Weight IV, Fixed, 95% CI	Odds Ratio IV, Fixed, 95% Cl	
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1	SE Weight IV, Fixed, 95% CI		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 Correia 2010 -1.6094 0.4	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50]		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 Correia 2010 -1.6094 0.4	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44]		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Correia 2010 -1.6094 0.4 Justino 2011 -1.5606 0.3 Patel 2013 -1.4271 0.2	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44]		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Correia 2010 -1.6094 0.4 Justino 2011 -1.5606 0.3 Patel 2013 -1.4271 0.2	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36]		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Correia 2010 -1.6094 0.4 Justino 2011 -1.5606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) Heterogeneity: Chi ^a = 0.47, df = 3 (P = 0.93);	SE Weight IV, Fixed, 95% CI 6675 4.1% 0.20 [0.08, 0.50] 6785 6.2% 0.21 [0.10, 0.44] 2069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] ²=0% I²		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Correia 2010 -1.6606 0.3 Justino 2011 -1.5606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) -1.3093 0.	SE Weight IV, Fixed, 95% CI 6675 4.1% 0.20 [0.08, 0.50] 6785 6.2% 0.21 [0.10, 0.44] 2069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] ²=0% I²		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.5606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) Heterogeneity: Chi ^a = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.0001)	SE Weight IV, Fixed, 95% CI 6675 4.1% 0.20 [0.08, 0.50] 6785 6.2% 0.21 [0.10, 0.44] 2069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] ²=0% I²		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.5606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% Cl) Heterogeneity: Chi [#] = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] P = 0% 1)		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.6606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] I ^P = 0% 1)		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Correia 2010 -1.6094 0.4 Justino 2011 -1.5606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 2069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] P = 0% 1)		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.6606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 2069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] P = 0% 1)		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2011 -1.5606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) -1.4271 0.2 Heterogeneity: Chi ^a = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] 267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.16, 0.36] 1) 10 2069 20.8% 0.24 [0.16, 0.36] 2049 20.8% 0.24 [0.16, 0.36] 2447 14.9% 0.42 [0.26, 0.68] 56.4% 0.28 [0.22, 0.36]		
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] 2.267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] I ^P = 0% 1) 2069 20.8% 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.26, 0.68] 56.4% 0.28 [0.22, 0.36] I ^P = 48% 1		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.6606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) -1.4271 0.2 Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.0001)	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.18, 0.32] P = 0% 1) 2069 20.8% 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.26, 0.68] 56.4% 0.28 [0.22, 0.36] P = 48% 1)		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2011 -1.5606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI)	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] .267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.16, 0.36] 10 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.16, 0.36] 2069 20.8% 0.24 [0.26, 0.68] 56.4% 0.28 [0.22, 0.36] I ² = 48% 1) 100.0%		
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.6066 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) -1.4271 0.2 Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] 267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.16, 0.36] 19" = 0% 1) 2069 20.8% 0.24 [0.16, 0.36] 2447 14.9% 0.24 [0.26, 0.68] 56.4% 0.28 [0.22, 0.36] I ² = 48% 1) 100.0% 0.26 [0.22, 0.31] I ² = 0% 1		100
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.6094 0.4 Justino 2011 -1.6606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] 2.267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.16, 0.36] 10 10 2069 20.8% 0.24 [0.16, 0.36] 10 0.24 [0.16, 0.36] 10 0.28 [0.22, 0.36] I ^P = 48% 1) 100.0% 0.26 [0.22, 0.31] I ^P = 0% 1)	IV, Fixed, 95% CI	100
	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.6066 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) -1.4271 0.2 Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] 2.267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.16, 0.36] 10 10 2069 20.8% 0.24 [0.16, 0.36] 10 0.24 [0.16, 0.36] 10 0.28 [0.22, 0.36] I ^P = 48% 1) 100.0% 0.26 [0.22, 0.31] I ^P = 0% 1)	V, Fixed, 95% CI	100
Fig. 4 Effectiveness	Study or Subgroup log[Odds Ratio] 1.4.1 RV1 -1.6094 0.4 Justino 2010 -1.6094 0.4 Justino 2011 -1.6606 0.3 Patel 2013 -1.4271 0.2 de Palma 2010 -1.3093 0. Subtotal (95% CI) Heterogeneity: Chi ² = 0.47, df = 3 (P = 0.93); Test for overall effect: Z = 10.00 (P < 0.00001	SE Weight IV, Fixed, 95% CI 1675 4.1% 0.20 [0.08, 0.50] 1785 6.2% 0.21 [0.10, 0.44] 1069 20.8% 0.24 [0.16, 0.36] 267 12.5% 0.27 [0.16, 0.46] 43.6% 0.24 [0.16, 0.36] 19" = 0% 1) 2069 20.8% 0.24 [0.16, 0.36] 2447 14.9% 0.42 [0.26, 0.68] 56.4% 0.28 [0.22, 0.36] I ^P = 48% 1) 100.0% 10 100.0% 0.26 [0.22, 0.31] I ^P = 0% 1) 10	IV, Fixed, 95% CI	100

Decrease in deaths cases in Mexico, after rotavirus vaccination

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Effect of Rotavirus Vaccination on Death from Childhood Diarrhea in Mexico

Impact of RV vaccine in LATAM

National estimates of reduction in all-cause diarrhoea and species A rotavirus (RVA) disease burden after RVA vaccine introduction

					DIM	Decli	ne in disease		
Reference	Country	Per capita national income (\$)		Post-vaccine year(s)	RVA vaccine coverage (%)	Vaccinated age groups ^b (%)	Children under five years of age (%)		
		Gas	troenteritis m	ortality					
Richardson et al. (2010)	Mexico	8,960	2003-2006	2008	74	41	35		
Lanzieri et al. (2010)	Brazil	8,070	2004-2005	2008	90	30-39	41		
do Carmo et al. (2011)	Brazil	8,070	2002-2005	2007-2009	82 ^{c,d}	22-28	22		
		Gastro	enteritis hosp	italization					
do Carmo et al. (2011)	Brazil	8,070	2002-2005	2007-2009	82 ^{<i>c</i>,<i>d</i>}	21-25	17		
Lanzieri et al. (2010)	Brazil	8,070	1998-2005	2007	78^d	26-48	31		
Molto et al. (2011)	Panama	6,570	2003-2005	2008	94	15-31	37		
Quintanar-Solares et al. (2011)	Mexico	8,960	2003-2006	2009	89	43-52	40		
de Palma et al. $(2010)^a$	El Salvador	3,370	2006	2009	-	Not available	51		
	RVA hospitalization								
Yen et al. (2011a)	El Salvador	3,370	2006	2008-2009	77 ^c	79-86	69-81		
Sáfadi et al. (2010)	Brazil	8,070	2004-2005	2007-2008	82 ^c	73-82	59		

a: Jan-June estimates; *b*: children under one or two years of age depending on year of vaccine introduction; *c*: annual average over the post-vaccine; *d*: RVA dose 2 coverage years.

Rishi D., et al Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(8): 907-911, Dec 2011

Herd Protection: reduction in rotavirus among unvaccinated age groups in El Salvador

Age	Decline in rotavirus hospitalization rate (2008 vs. 2006)	Rotavirus vaccine coverage in 2008 (>=1 dose)
< 1 year	84% (80 to 88)	76%
1 year	86% (82 to 89)	84%
2 years	65% (50 to 75)	0
3 years	41% (-7 to 68)	0
4 years	68% (29 to 85)	0
	These age co	horts were ineligible
	to receive	rotavirus vaccine

Potential benefits for unvaccinated through indirect effects: 48% in HIC and 25% in LMIC

Source	Country	Age rang (months)		Vaccine type	Coverage (%)	Quality score	RR (95% Cl)	% Weigh
Raes	BEL	0-2	2007-2008	RV1	89	1	0.45 (0.27, 0.78)	3.09
Raes	BEL	24-59	2007-2008	RV1	87	1	0.91 (0.73, 1.14)	4.36
Wilson	CAN	24-35	2011-2013	RV1	87	1	0.48 (0.27, 0.87)	2.88
Wilson	CAN	36-59	2011-2013	RV1	87	1	0.31 (0.16, 0.60)	2.59
Dey	AUS	24-59	2007-2010	RV1/RV5	85	2	0.45 (0.38, 0.53)	4.52
Yen	SLV	12-47	2008-2009	RV1	78	2	0.50 (0.34, 0.68)	3.87
Field	AUS	24-35	2008	RV5	89.6	2	0.60 (0.50, 0.70)	4.54
Field	AUS	36-47	2008	RV5	89.6	2	• 0.30 (0.30, 0.50)	4.25
Field	AUS	48-59	2008	RV5	89.6	2	0.70 (0.50, 1.00)	3.88
Sáfadi	BRA	24-59	2007-2008	RV1	79.5	2	0.76 (0.49, 1.18)	3.48
Bégué	AUT	24-59	2007-2009	RV5	43	2	0.59 (0.31, 1.10)	2.69
Atchison	GBR	12-23	2013-2014	RV1	93	3	0.34 (0.23, 0.50)	3.70
Atchison	GBR	24-35	2013-2014	RV1	93	3	0.36 (0.24, 0.52)	3.71
Atchison	GBR	36-47	2013-2014	RV1	93	3	0.34 (0.23, 0.50)	3.70
Atchison	GBR	48-59	2013-2014	RV1	93	3	• 0.35 (0.23, 0.52)	3.62
Leshern	USA	3-23	2007-2011	RV1/RV5	76	3	0.59 (0.41, 0.71)	4.17
Eberly	USA	0-11	2007-2009	RV5	54.1	3	0.25 (0.20, 0.30)	4.43
Eberly	USA	12-23	2007-2009	RV5	54.1	3	0.34 (0.29, 0.40)	4.56
Eberly	USA	24-35	2007-2009	RV5	54.1	3	0.54 (0.43, 0.67)	4.37
Eberly	USA	36-47	2007-2009	RV5	54.1	3	0.82 (0.59, 1.13)	3.97
Eberly	USA	48-59	2007-2009	RV5	54.1	3	0.74 (0.46, 1.17)	3.36
Cortes	USA	2-24	2008-2009	RV5	68.5	4	0.71 (0.62, 0.82)	4.61
Panozzo	USA	8-20	2007-2010	RV5	83.1	4	0.48 (0.34, 0.65)	3.97
Gheorghit	a MDA	24-59	2012-2013	RV1	35	4	0.68 (0.59, 0.78)	4.61
Zaman	BGD	5-24	2008-2011	RV1	74	5	0.99 (0.56, 1.29)	3.58
Zaman	BGD	1.5-2.5	2008-2011	RV1	74	5	1.09 (0.59, 1.41)	3.50
A	-squared =	88.3%, p = 0	.000)				0.52 (0.45, 0.61)	100.00

Source		Age range (months)	Years	Vaccine type	Coverage (%)	Quality score	RR (95% CI) %	Weigh
Raes	BEL	0-2	2007-2008	RV1	89	1	0.45 (0.27, 0.78)	3.83
Raes	BEL	24-59	2007-2008	RV1	87	1	0.91 (0.73, 1.14)	5.38
Wilson	CAN	24-35	2011-2013	RV1	87	1	0.48 (0.27, 0.87)	3.56
Wilson	CAN	36-59	2011-2013	RV1	87	1 -	0.31 (0.16, 0.60)	3.21
Dey	AUS	24-59	2007-2010	RV1/RV5	85	2	+ 1 0.45 (0.38, 0.53)	5.57
Field	AUS	24-35	2008	RV5	89.6	2	0.60 (0.50, 0.70)	5.59
Field	AUS	36-47	2008	RV5	89.6	2	• 0.30 (0.30, 0.50)	5.24
Field	AUS	48-59	2008	RV5	89.6	2	0.70 (0.50, 1.00)	4.79
Bégué	AUT	24-59	2007-2009	RV5	43	2	• 0.59 (0.31, 1.10)	3.34
Atchison	GBR	12-23	2013-2014	RV1	93	3	0.34 (0.23, 0.50)	4.58
Atchison	GBR	24-35	2013-2014	RV1	93	3	0.36 (0.24, 0.52)	4.59
Atchison	GBR	36-47	2013-2014	RV1	93	3	0.34 (0.23, 0.50)	4.58
Atchison	GBR	48-59	2013-2014	RV1	93	3	0.35 (0.23, 0.52)	4.47
Leshem	USA	3-23	2007-2011	RV1/RV5	76	3	0.59 (0.41, 0.71)	5.14
Eberly	USA	0-11	2007-2009	RV5	54.1	3	0.25 (0.20, 0.30)	5.46
Eberly	USA	12-23	2007-2009	RV5	54.1	3	0.34 (0.29, 0.40)	5.62
Eberly	USA	24-35	2007-2009	RV5	54.1	3	0.54 (0.43, 0.67)	5.39
Eberly	USA	36-47	2007-2009	RV5	54.1	3	0.82 (0.59, 1.13)	4.90
Eberly	USA	48-59	2007-2009	RV5	54.1	3	0.74 (0.46, 1.17)	4.16
Cortes	USA	2-24	2008-2009	RV5	68.5	4	0.71 (0.62, 0.82)	5.68
Panozzo	USA	8-20	2007-2010	RV5	83.1	4	0.48 (0.34, 0.65)	4.91
1 BIIOLLO		= 88.5%, p					0.48 (0.40, 0.57)	100.00

в	Source		Age range (months)	Years	Vaccine Type	Coverage (%)	Quality Score		RR (95% CI) % Weight
	Yen	SLV	12-47	2008-2009	RV1	78	2		0.50 (0.34, 0.68) 19.97
	Sáfadi	BRA	24-59	2007-2008	RV1	79.5	2	-	0.76 (0.49, 1.18) 16.06
	Gheorghita	MDA	24-59	2012-2013	RV1	35	4	_• <u>+</u>	0.68 (0.59, 0.78) 30.82
	Zaman	BGD	5-24	2008-2011	RV1	74	5		0.99 (0.56, 1.29) 16.95
	Zaman	BGD	1.5-2.5	2008-2011	RV1	74	5		1.09 (0.59, 1.41) 16.21
	Overall (I-s	quared =	62.2%, p =	0.032)					0.75 (0.59, 0.95) 100.00
	NOTE: We	eights are 1	from random	n effects anal	ysis				
								0.25 0.5 1.0	2.0

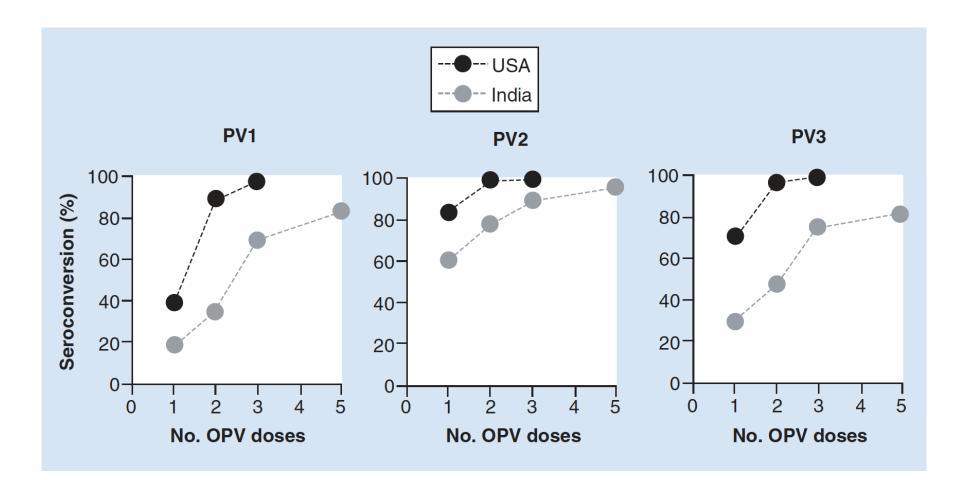
Rosettie K., et al Am. J. Trop. Med. Hyg., 98(4), 2018, pp. 1197–1201

Lower antirotavirus IgA seroconversion after concomitant bOPV administration

Rotavirus Serum IgA Immune Response in Children Receiving Rotarix Coadministered With bOPV or IPV

Sasirekha Ramani, PhD, * Nora Mamani, Med Tech, † Rodolfo Villena, MD, ‡ Ananda S. Bandyopadhyay, MBBS, § Chris Gast, PhD, ¶ Alicia Sato, MS, ¶ Daniel Laucirica, BS, † Ralf Clemens, MD, I Mary K. Estes, MD, * and Miguel L. O'Ryan, MD†

Α	IF	PV+rota/bOPV+ro	ta				
		Group 1				T	
Endpoint	%	95% CI	n/N	%	95% CI	n/N	p-value
Week 8 Seropositivity	6%	(3.3%, 11.4%)	(9/145)	6%	(3.7%, 9.2%)	(17/289)	1.000
Week 28 Seroconversion	50%	(42.3%, 58.4%)	(73/145)	65%	(59.7%, 70.6%)	(189/289)	0.004
Week 28 median Log ₁₀ IgA Titer units (IQR) overall		1.8 (1.2)			2.1 (1.3)		0.007
Week 28 median Log ₁₀ IgA Titer units (UIQR) among those seropositive at Week 28		2.4 (0.7)			0.680		
В							
		Group 2					
Endpoint	%	95% CI	n/N	%	95% CI	n/N	p-value
Week 8 Seropositivity	4%	(1.6%, 8.2%)	(5/138)	8%	(4.6%, 13.4%)	(12/151)	0.139
Week 28 Seroconversion	63%	(54.7%, 70.6%)	(87/138)	68%	(59.7%, 74.5%)	(102/151)	0.459
Week 28 median Log ₁₀ IgA Titer units (IQR) overall		2.0 (1.3)			2.2 (1.3)		0.156
Week 28 median Log10 IgA Titer units (UIQR) in among those seropositive at Week 28		2.3 (0.7)			2.4 (0.5)		0.797

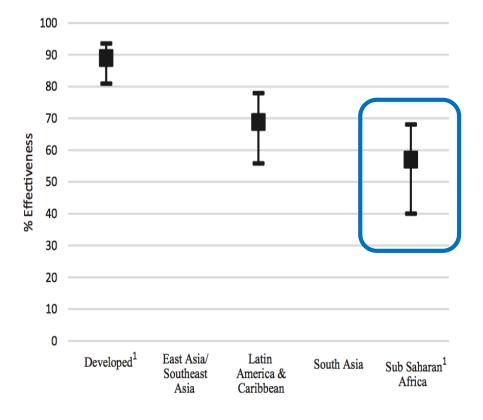

Group 1 receiving RotarixTM and bOPV concomitantly Groups 2 and 3 receiving RotarixTM and IPV concomitantly Ramani Pediatr Infect Dis J 2016;35:1137–1139

Where are we now?

Vaccine	Status	Comments	Selected references	
RotaTeq ®/Rotarix ®	Worldwide License	Eleven years post-licensure; worldwide distribution; demonstrated effectiveness	Giaquinto et al., 2011 ⁶⁸ ; O'Ryan et al., 2011 ²⁰	
Rotashield®	First licensed rotavirus vaccine in 1998 (USA); was withdrawn due to association with intestinal intussusception	Currently in clinical trials. Two-dose regimen beginning within the first 30 days of life; 64% efficacy for the first 12 months of life	Armah et al., 2013 ⁴²	
LLR®/Rotavin- M1®/Rotavac®	Restricted license	Only used in China/Vietnam/India (respectively); lack of robust effectiveness data	Fu et al., 2012 ³² ; Dang et al., 2012 ⁶⁹ ; Bhandari et al., 2014 ⁷⁰	
UK reassortant (Rotasil®)	Restricted license	Phase III study	Isanaka el al ³⁶	
RV3BB	Early clinical development	Phase I or early Phase II studies	Danchin et al., 2013 ⁷¹ ; Luna et al., 2013 ⁷² ; Bines et al ³⁸ ; Naik et al ³⁵	
Truncated VP8 subunit and a tetanus toxoid P2 protein	Early clinical development	Phase I/II study	Groome et al ³⁹	

Lessons learned from real world experiences with enteric vaccines

Impaired immunogenicity of oral poliovirus vaccine in India

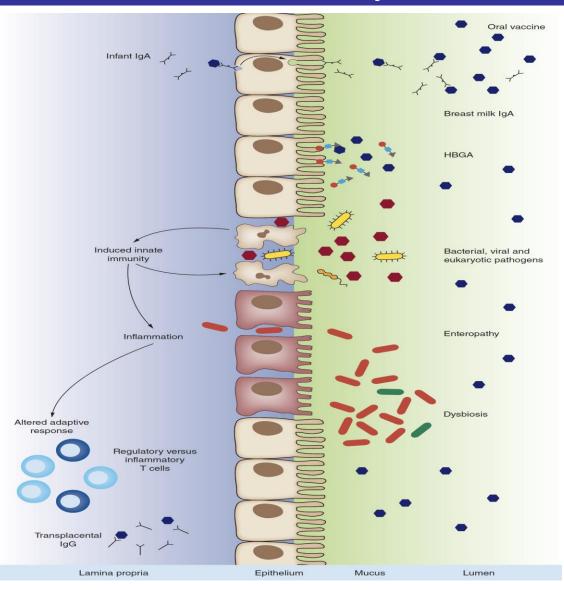


Parker E., et al FutureMicrobiol. (2018) 13(1), 97-118

Effectiveness comparison regarding GDP

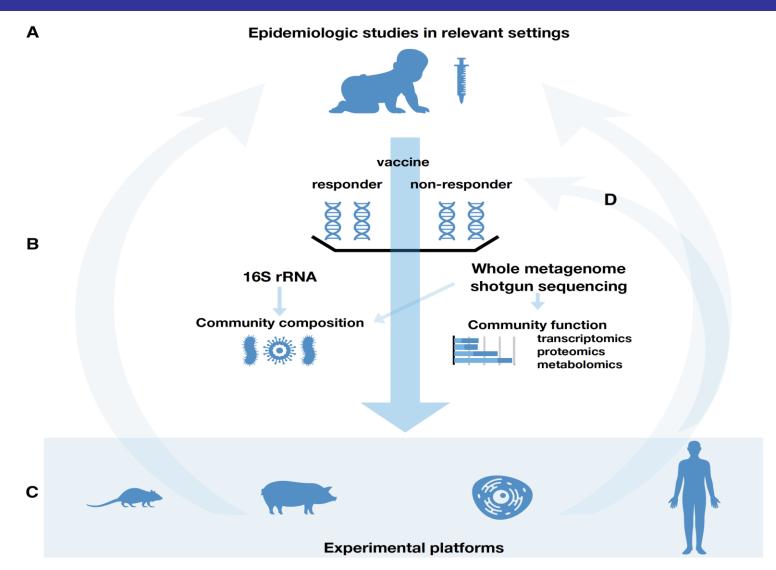
A Systematic Review of the Effect of Rotavirus Vaccination on Diarrhea Outcomes Among Children Younger Than 5 Years

Laura M. Lamberti, PhD, MHS, Sania Ashraf, MPH, Christa L. Fischer Walker, PhD, MHS, and Robert E. Black, MD, MPH


Potential explanations

- Missed vaccination opportunity
 Narrow range of vaccination
- First infection occurs at earlier ages
 - Previous to vaccination
- Environmental enteropathy: Malnutrition
 Chronic intestinal inflammation due to exposure to other enteropathogens

- Microbiome


Lamberti L., et al Pediatr Infect Dis J 2016;35:992–998 ; O'Ryan M. F1000Research 2017, 6(F1000 Faculty Rev):1517

Potential mechanisms underlying oral vaccine efficacy variability

Parker E., et al FutureMicrobiol. (2018) 13(1), 97-118

Microbiome and immune response to enteric vaccines

Harris V., Drugs (2018) 78:1063–1072

Microbiome and immune response to enteric vaccines

Vaccine	Population	Vaccine response outcome	Commensal micro- biota correlation with response, FDR < 0.15, (Phylum)	Commensal micro- biota correlation with nonresponse, FDR < 0.15, (Phylum)	Methods	References
Rotavirus (Rotarix)	India, pre-vaccination 6 weeks ^a	Seroconversion (anti- RV IgA > 20 IU/mL)	No commensal micro- biota correlations		16S rRNA	[68]
Rotavirus (Rotarix)	India, pre-vaccination 6 weeks ^a	Shedding (RT-PCR)	Higher diversity (#OTU) Higher Proteobacteria diversity (#OTU) No taxonomic correla- tions		16S rRNA	[68] [98]
Rotavirus (Rotarix)	Pakistan, pre-vaccina- tion 6 weeks	Seroconversion (anti- RV IgA > 20 IU/mL)	Higher diversity (Shannon index) Eshcerichia coli et rel ^b (Proteobacteria) Bacteroides fragilis et rel (Bacteroidetes) Parabacteroides distasonis et rel (Bacteroidetes) Clostridium difficile et rel (Firmicutes)	Uncultured Sele- nomonadaceae ^b (Firmicutes) Megasphaera elsdenii et rel ^b (Firmicutes)	HitChip	[69]
Rotavirus (Rotarix)	Ghana, pre-vaccination 6 weeks	Seroconversion (anti- RV IgA > 20 IU/mL)	No difference in diversity Streptococcus bovis et rel ^b (Bacilli)	Allistepes et rel ^b (Bac- teroidetes) Bacteroidetes ovatus et rel ^b (Bacteroidetes) Bacteroides uniformis et rel ^b (Bacteroi- detes)	HitChip	[70]
'adjuvanting' capacity of the endogenous microbiota in LMIC infants to effect vaccine immune response?				Parabacteroides distasonis et rel ^b (Bacteroidetes) Prevotella melani- nogenica et rel ^b (Bacteroidetes) Prevotella oralis et rel ^b (Bacteroidetes) Tannerella et rel ^b (Bacteroidetes) Coprococcus eutactus et rel ^b (Firmicutes) Eubacterium hallii et rel ^b (Firmicutes) Ruminococcus obeum et rel ^b (Firmicutes)		

 Table 1
 Known correlations between rotavirus and oral polio vaccine immunogenicity and microbiome composition

Microbiome and immune response to enteric vaccines

 Table 1
 Known correlations between rotavirus and oral polio vaccine immunogenicity and microbiome composition

Vaccine	Population	Vaccine response outcome	Commensal micro- biota correlation with response, FDR < 0.15, (Phylum)	Commensal micro- biota correlation with nonresponse, FDR < 0.15, (Phylum)	Methods	References
Polio	India pre-vaccination, 6 weeks ^a	Type 3 OPV serocon- version		Higher diversity (#OTU) Epsilonproteobacteria class (Proteobac- teria) Betaproteobacteria class (Proteobac- teria) Verrucomicrobiae class	16S rRNA	[98]
Polio	India pre-vaccination, 6 weeks ^a	Shedding (RT- PCR,≥1 Sabin strain)	No taxonomic correla- tions	Higher diversity (#OTU)	16S rRNA	[98]
Polio	Bangladesh Composite of 6, 11, 15 week stool	Height of anti-OPV IgG		Acinetobacter genus (Proteobacteria) [p < 0.05, not cor- rected]	16S rRNA	(99]

Challenges and gaps in enteric vaccines

Latam NIPs

- International initiatives to improve childhood immunization rates in LIC/MIC in the last four decades
- Significant increase in child vaccination coverage → reduction of infant morbidity and mortality due to infectious diseases
- Crucial intervention in the reduction of inequities and in the extension of a universal coverage system for the entire population
- Inequalities between countries and socioeconomic in childhood vaccination in LIC/MIC

Hajizadeh M. J Epidemiol Community Health 2018;72:719–725; Bascolo E., et al Rev Panam Salud Publica 41, 2017

Challenges in enteric vaccines

- Consistent epidemiological surveillance
- Optimize coverages
- Analysis / Impact studies
 - Direct and indirect effects
- New vaccines
 - Efficacy models
 - Safety
 - Co administration
- Innovative technologies
 - Tolerate high temperatures
 - Decrease packaging volume
- Maintaining immunization as a high political priority

Drinking water supply

Uganda: 6,4%

México 42,6% Peru: 50,2% Guatemala 60,8 Colombia 71,1

Costa Rica 89,8% Chile 98,2% Argentina 98,5%

Conclusions

Take home messages

- Enteric pathogens are a substantial threat to public health
 - Severe malnutrition, stunting, cognitive dysfunction and decreased adult accomplishment and productivity
- Progress
 - Vaccines in development for enteric pathogens: Shiguella, ETEC, NoV
 - Rotavirus: Increasing data about safety and effectiveness
 - Indirect benefits to unvaccinated groups
- Challenges
 - Rotavirus vaccines:
 - Safe, effectives ... Immunity impairment
 - Susteinables NIPs
 - Drinking water supply
- Vaccines are public health benefit and a right

XI International Symposium for Latin American experts

Enteric vaccines Progress and challenges

GRACIAS!! OBRIGADO!! THANK YOU!! MERCI!!

