

Veyrier-du-Lac, 20-22 June 2018

A Universal Virus Capture Method for a Rapid & Ultrasensitive Detection of Pathogens for Early & Late Post-Exposure Countermeasures

Francisco Veas

EC H2020 "IF-EBOLA action" – Ebola preparedness EC H2020 EDCTP "PANDORA"- preparedness

Faculty of Pharmacy-University of Montpellier Montpellier – France

Global context & Health: Epistemological bases to contextualize the problematic:

Uncontrolled Global Demography, productivity & waist chaos (eg.: Palm oil)

Human demography growth OUT OF CONTROL with

desastrous consequences <u>1800</u> : 1B (Jenner & Pasteur) ; <u>1900</u> 1.5B; <u>1960</u>: 3B; <u>2017</u>: 7.5B to go **very soon 10 B!.** (

The present population of humans consume 100 to 1000-times more energy than a human in 1800. Africa will double its demography. The pop density of Bangladesh in France (67 M → approx. 900 M) In Europe in 30 years, -80 % insectes & in 15 years -30% birds Orangutans' poaching is done deliberately as a policy made by palm oil corporations. Over 50 Orangutan are killed per week due to deforestation (heavy machinery or fire).

Orangutans (=pest for oil palm companies) **are left starved in plantations searching for** young palm plants as food.

Elephants are often killed by poisoning. Due to habitat loss and lack of food, elephants wander onto plantations and into villages and destroy crops. Their **habitat is cleared for oil palm**. Plantations and local villages often poison the elephants

Tiger and Rhino numbers are so low due to habitat loss and is rapidly nearing.

Water pollution from an oil palm plantation in Indonesia Oxygen reduction due to fertilizers, pesticides, etc

Palm oil production still on the rise.

Clobal palm oil production 1964-2014

The world has lost -50% of its flora & fauna these last 40 years !

Urgent need to set up a prepared rapid One-Health approach to adopt efficient epidemic surveillance & countermeasures

Emerging and Reemerging infections -70% vector-borne or zoonotic

The absence of learning lessons from latest important outbreaks

Virus outbreak/ Transmission	Year	Location	Main symptoms
Hantavirus/reservoir	1993	Americas	fever &severe cardio-pulmonary dysfunctions
SarsCoV/reservoir	2003	China	fever with severe respiratory distress
H1N1/reservoir	2009	Mexico /the World	fever with broncho-pulmonary dysfunctions
MERSCoV/reservoir	2012	Middle East /Korea	fever with severe respiratory distress
Chikungunya/vector	2014	Brazil/Caribbean	fever and joint pain and dysfunctions
Ebola/reservoir?	2014	West Africa	fever and severe vascular dysfunctions
Zika/vector	2015	Americas/Brazil	fever, rash, but 80% asymptomatic / fetus with MC

From WHO reports

Most of them have evolved on very large areas much quicker than **the slow and inefficient responses** on both

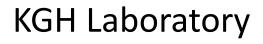
diagnostic (with a lot of false-negative diagnoses) and therapeutic or vaccine (ChikV example)

The European IF-EBOLA action (H2020) 2014-2017

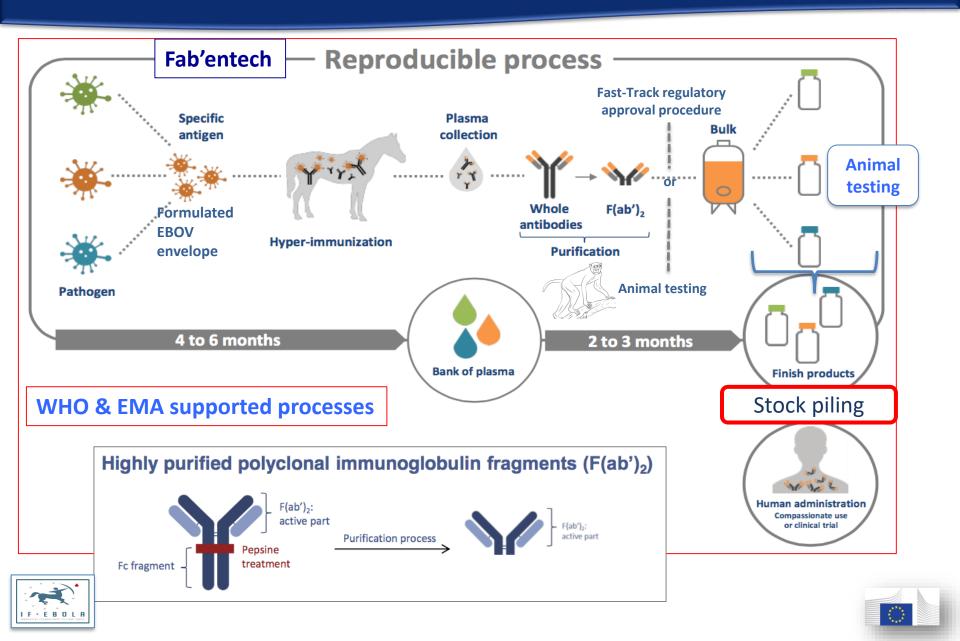
"An early Ebolavirus detection for an early post-exposure passive immune therapy"

our le **Développement**

Institut de Recherche pour le **Développement**, France; **Orion Integrated Biosciences**, USA; **Absiskey**, France; Ministry of Health and Sanitation, Sierra Leone; **Metabiota** Inc., USA; **Fab'entech**, Pasteur Institute, France: France: Spallanzani Institute, Italy; Ben Gurion University, Israel; Manitoba University, Canada.


- (i) an EBOLA ultrasensitive diagnostic to detect low viral loads by using a sample prep prior a PCR (the FDA-approved EBOLA USAMRIID rt-PCR). The purpose of this approach is to detect ebola virus as early as possible to isolate contaminated patients and reduce viral spreading. Automized FOINT OF CARE
- (i) an anti-EBOLA passive immunotherapy based on horse anti-EBOLA polyclonal F(ab')2, that has been highly efficient in well-established EBOLA infection of small animal models, respectively a 7-days life-span of infected mouse model in the Gary Kobinger's lab (BSL4@NML, Winnipeg Canada) and a 7-days life-span of infected guinea pig in the Heinz Feldman's Lab (BSL4@NIH, Montana, USA). 100% of survival in both models after F(ab')2. In particular, when these animals are treated a days after infection (they have lost 30% of their weight) they completely recover up to day 42 (where they must be sacrificed due to ethical rules @ NIH). The European Medical Agency, EMA, have considered that this product perfectly fulfils Pharmaceutical GMP production rules. 900 litres represent individual treatments for about 20-to-30 000 patients. WHO–FABENTCH Collaboration & EMA have declared this product as one of the 5 most promising therapies
- (i) Accurate metagenomic analyses thanks to sample prep coupled with new algorithm (RIGEL) and a new data bank (22-times higher than gene bank!) to assess Ebola strains and co infections.
- (i) a disruptive technology of « Plasma Water Sanitation System » to provide 4800 literes of drinkable water to hospital and schools in regions or countries with poor resources; (avoid plastic waste

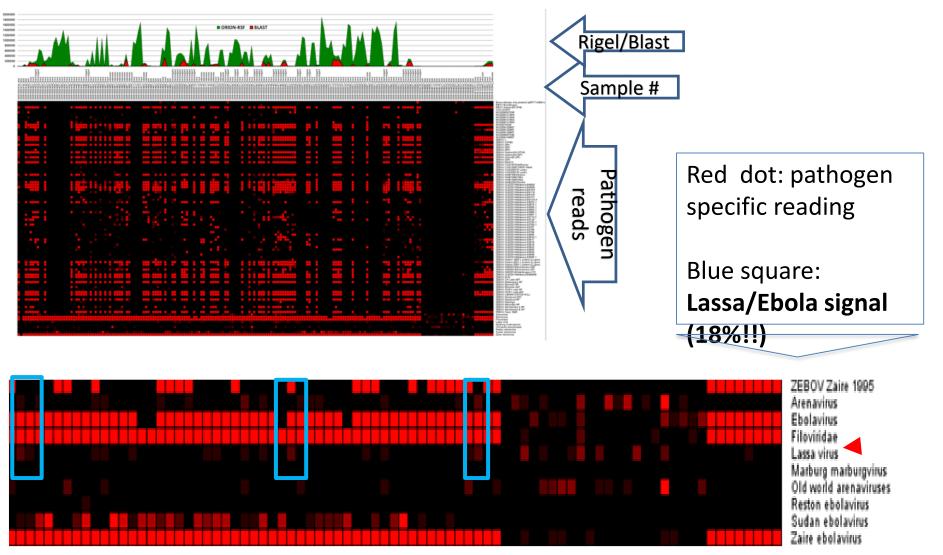
EBOLA virus diagnostic during the outbreak


rt-RT-PCR, Kenema, Sierra Leone

Clinical Data Recording

Fab'ntech produce GMP horse anti-EBOV antibodies

EIn vivo virus neutralizing F(ab')2 antibodies and survival rescue of infected animals: POC

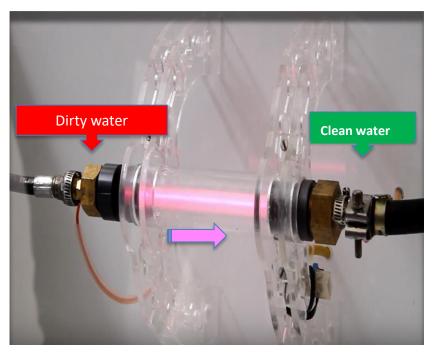


IF-EBOLA action


NGS-Metagenomic analyses

EBOLA-LASSA virus co-infections

Valdivia // Veas @Gordon Research Conferences, 2015 and 7th Filovirus Symposium 2015


Plasma Water Sanitation system (PWSS)

PWSS : (1) high pressure (100 bars) transform H20 into liquid-gas biphasic state; (2) ionization provide plasma state generating high temperature spots, shocking waves, ozone, ROS, UV rays that change the position of all electrons in all components (of dirty water), thus destroying microorganisms

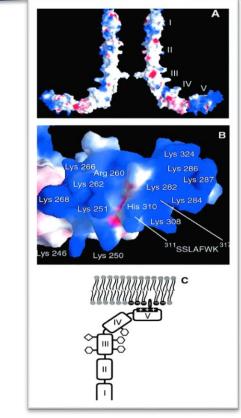
PWSS developed by AIC

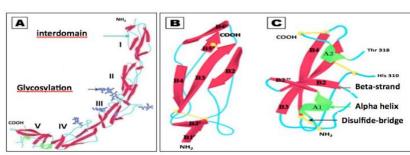
- No chemicals
- No taste no odor vs chlorine & pollution
- Destroy 100% micro-organisms (VS much less with chlorine or filtration methods)
- Only 100 Watts to produce 35 liters in 5 min (5 000 lt/day) (VS expensive filtration)
- Less plastic going to water (rivers & oceans)

Impact water quality water on Immune status & microbiota

A universal platform to improve of diagnostics of pathogens A universal poly-specific capture of pernicious microorganisms

A sample preparation tool to concentrate samples with low pathogen loads for both:


(i) ultrasensitive detection of pernicious microorganisms to avoid false-diagnoses

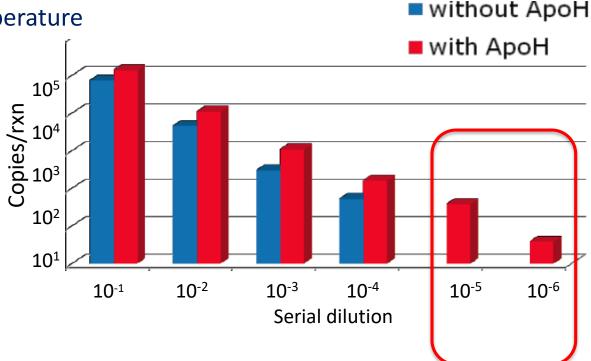

(ii) metagenomic extraction data to accurate detect & identify the presence of known or unknown pathogens

Adopt adapted outbreak & therapy countermeasures

Scavenger ApoH acute phase protein to capture pathogen² Main characteristics

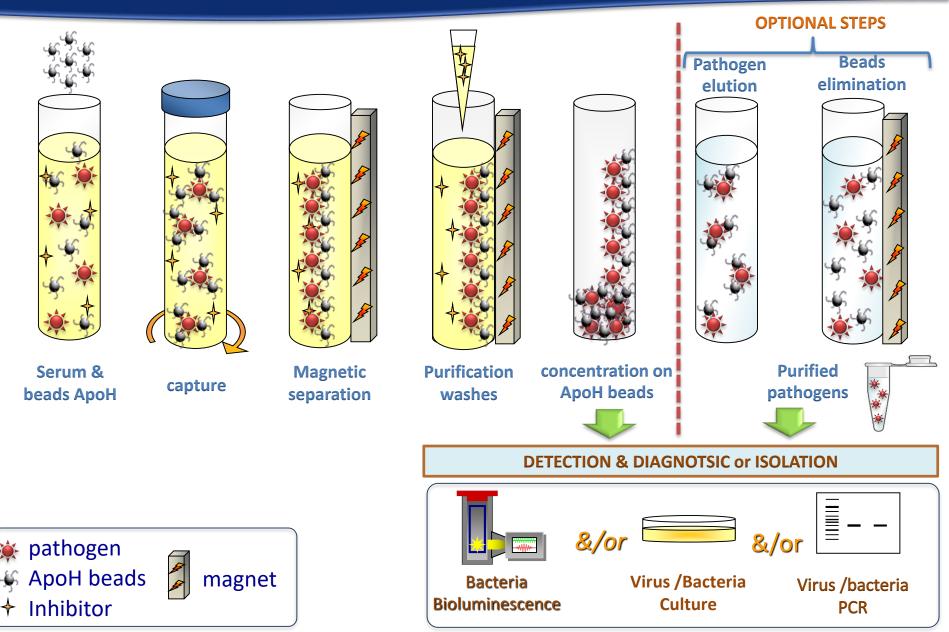
- ✓ molecular mass varying 43 -54 kDa (Glycosylation)→345aa
- ✓ plasmatic concentration → 200 mg/L
- ✓ ApoH comprises 5 sushi domains: 4 SCR (short consensus repeats) from CCP (complement control protein) module type & a fifth lysine rich domain (with a large patch of 14 positively charged residues) → electrostatic interactions
- ✓ unusual composition with 6.2 % cysteine and 8.3 % proline
- ✓ Hydrophobic interactions with anionic phospholipids (PS, Cardiolipin, some of which are present in HIV, HBV, HCV, (Stefas //Veas 2001, 2011, 2012, 2015)
- Protein-Protein interactions (Sbi of *S. aureus*; Microbiol 1999); protein H of *S. pyogenes*; Mol Microbiol. 2008, 67(3): 482-92)
- ✓ myristoiled or palmitoiled groups (Stefas //Veas 2001)
- ✓ <u>High affinity</u> & efficiency to capture pernicious <u>microorganisms</u>:
 - viruses
 - bacteria
 - Fungi
 - parasites
 - prions

(EMBO Journal. 1999, 18 (19) : 5166

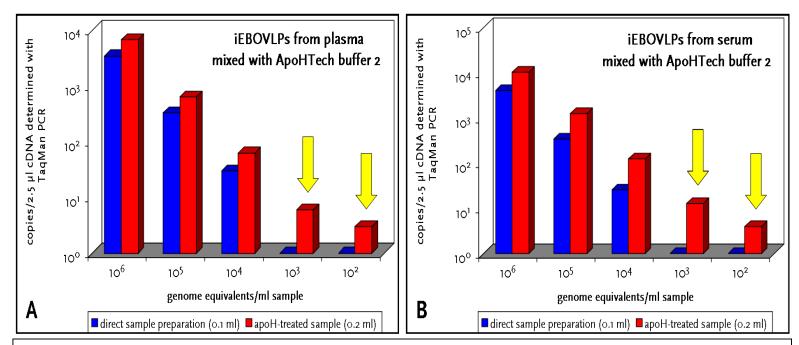

ApoH detection of respiratory viruses

Influenza

Swabs spiked with H3N2 Influenza virus:


- Spiked with cell cultured viruses
- Stored for 24 h at room temperature
- Diluted in 4 mL MEM
- Without ApoH
- With ApoH-beads

Patient sample copies/rxn								
Without ApoH	With ApoH							
1.7 ^E +05	1.8 ^E +06							


→ Functional protocol established to enrich respiratory viruses from nasal swabs

ApoH capture Enabling ultrasensitive micro-organism culture or PCR

ApoH-enhanced sensitivity of iVLP-detection. Yellow arrows mark the shifted detection limit of serial dilutions of iEBOVLPs spiked in human plasma and serum respectively, due to ApoH-treatment cDNA of each dilution step was subjected to direct analysis (blue) or post-ApoH-enhanced detection (red) respectively.

ApoH for clinical detection of low viral infections

HCV

Among 25 HCV-negative diagnoses with the HCV RT-PCR (COBAS™) done in the Universitary Hospital of Grenoble,

* 11 of them (44%) turn HCV-Positive in a post-ApoH RT-PCR analyses.

Serum samples	COBAS R	T-qPCR*	ApoH + RT-PCR						
hepatitis symptoms	HCV pos	HCV neg	HCV pos	HCV neg					
n=25	0	25	11**	14					

ApoH + qPCR = COBAS HCV if **high** loads ApoH + PCR > COBAS HCV if **low** loads PLOS ONE

RESEARCH ARTICLE

Interactions between Hepatitis C Virus and the Human Apolipoprotein H Acute Phase Protein: A Tool for a Sensitive Detection of the Virus

Ilias Stefas¹⁶*, Sylvia Tigrett¹²⁰, Grégor Dubois², Marco Kaiser³, Estelle Lucarz¹, Delphine Gobby¹, Doroth y Bray⁴, Heinz Ellerbrok³, Jean Pierre Zarski⁸, Francisco Veas²*

Stefas//Veas PlosOne, 2015

ApoH & isolation of hemorrhagic Hantaviruses

DAPI

Anti-N Antibody

(FITC)

Phase

Lab strain

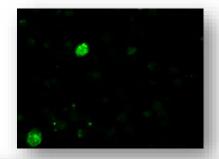
No virus

Isolated strain 1

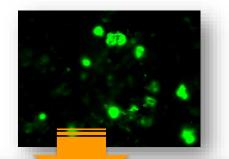
Isolated strain 2

ANDV-CHI 7913 Vero-E6 **US53 US54**

JCURNAL OF VIRCUCOY, May 2009, p. 5046-5055 0022-538X(09\$08:00+0 doi:10.1128/JVL02409-08 Copyright to 2009, American Society for Microbiology, All Rights Reserved. Vol. 83, No. 10


Andes Virus Antigens Are Shed in Urine of Patients with Acute Hantavirus Cardiopulmonary Syndrome^{7‡}

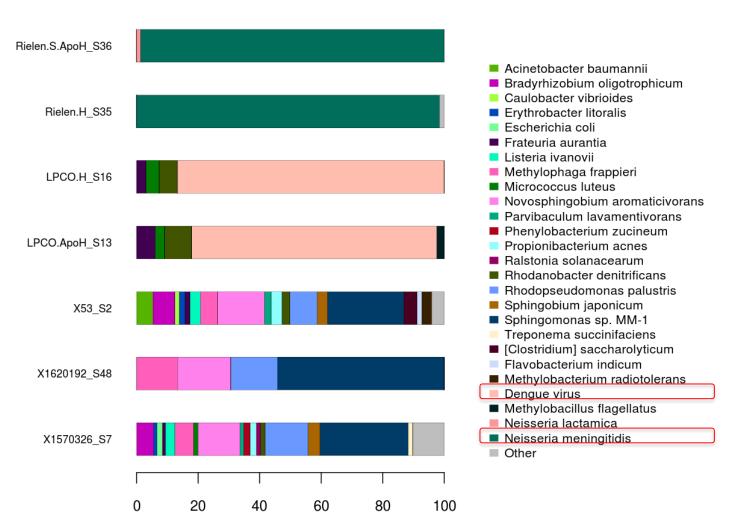
Paula Godoy,¹† Delphine Marsac,¹† Elias Stefas,² Pablo Ferrer,¹ Nicole D. Tischler,³ Karla Pino,¹ Pablo Ramdohr,¹ Pablo Vial,⁴ Pablo D. T. Valenzuela,^{3,5} Marcela Ferrés,¹ Francisco Veas,⁶ and Marcelo López-Lastra⁴*


Infection of Vero E6 cells with ApoH-captured Hantaviruses

ApoH isolation of respiratory viruses Capture & culture of replicating Influenza viruses

H3N2 infection (without ApoH) Detection using an anti-H3N2 MAb

Infection with ApoH-captured H3N2 Detection using an anti-H3N2 MAb



ApoH-captured of a cultivated H3N2 strain & subsequent infection of its target cells -> cytopathogenic effects

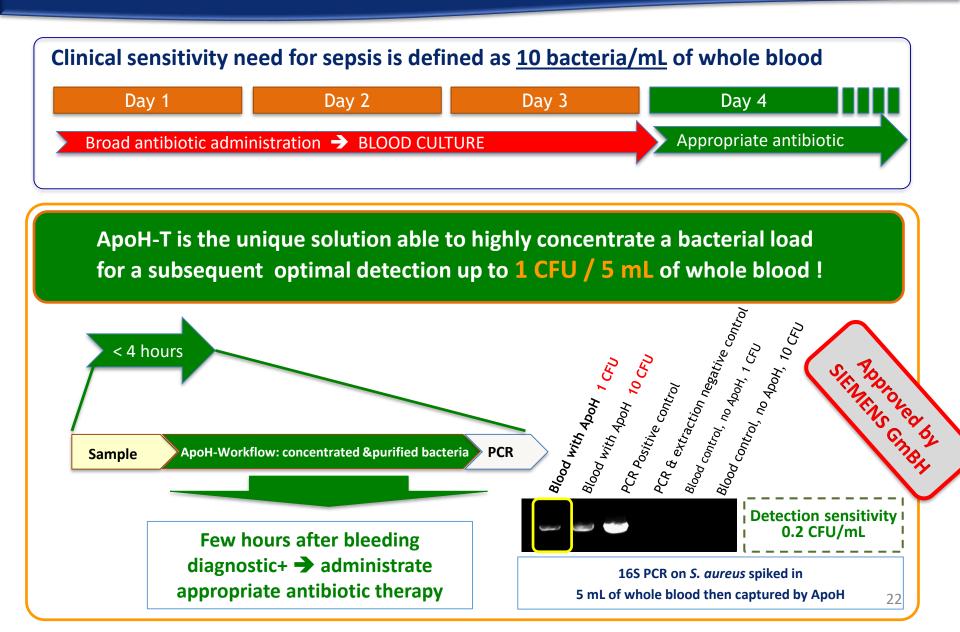
ApoH sample preparation – environmental FLU NGS-metagenomic analysis

rion 1.2																												
												I	nflu	lenz	za A													
1				12	0B-/	\pol	H_S3	39_R	1		1139378																	
I otal Keads (Millions) 9.0 7.0							H_S3					:		7195														
				120BNoApoH_S9_R1							1	1163																
0.6				120BNoApoH_S9_R2						0 1852																		
0.0				120SApoH_S11_R1 120SApoH_S11_R2					1903																			
0.4				1205NoApoH_S10_R1					486																			
0							oH_							393	<u>;</u>													
0.2																												
0.2																		_										
0																							_	_				
	_R1	_R2	17. - R1	_R2	17. - R1	_R2	17. - R1	_R2	17. 1	_R2	12 12	_R2	12 12	_R2	17 1	_R2	12	_R2	_R1	22_	12	22_	_R1	_R2	17. R	22_	17. - R	R2
	539	S39_		_S_	S11	S11_		S10	S13_	S13_	512			S6	S		_S7			S-18ApoH_S40_R2	S-18Qia_S2_R1	S			ຮ່	S	S-4ApoH_S4_R1	S-4ApoH S4
			120BNoApoH_S9	120BNoApoH		120SApoH_S11	Ho		30BNoApoH_S13_	30BNoApoH_S13	70SApoH_S12	70SApoH_S12	H1ApoH_S6.	H1ApoH_S6.	H1Qia_58	H1Qia_S8	H3ApoH_S7	H3ApoH_S7	HO	Ho	Qia	S-18Qia_	S-29ApoH_	S-29ApoH_S1	S-29Qia_	S-29Qia_S3	Hod	Hoo
	-Ap(-Ap(loA	loA	SApr	SApr)dp()dp()dp(удbr	SApr	SApr	11A	11A	H1	H1	13A	13A	S-18ApoH_	3Ap(S-18	S-18	29A	29A	S-29	S-29	-4A	$\Delta \Lambda$
	20B	120B-ApoH	OBN	OB	120SApoH	120	120SNoApoH_	120SNoApoH)BNc	BNG	70	700	-	<u> </u>			-	-	S-18	S-18		τ.	S-S	S-S			S	U
	1	1	12	12		• •	12(12(30	30																		

Unexplained encephalitic fevers (IDDEAA)

Distribution of read sequences after kraken/bracken analysis - species level

 Current bacterial detection & identification methods are too slow and/or not sensitive enough to drive anti-biotherapy for lifethreatening infections (sepsis...) or for HAI screening.


Main concerns:

- ♦ Blood culture based diagnosis
 - ♦ could take 2 days or more (up 15 days),
 - Iack of sensitivity (ex.: false-negative diagnoses due to presence of antibiotics...),
 - \diamond non-cultivable bacteria

♦ Molecular methods still do face a major sensitivity issue due to:

- ♦ the challenge to concentrate a few pathogens within several ml of blood,
- \diamond the presence of inhibitors

ApoH bring the highest sensitivity bacterial detection for clinical whole blood samples

ApoH use in clinical bacterial infection Very large bacterial SCOPE

Acinetobacter baumannii	Corynebacterium sp.	Mycobacterium abscessus	Salmonella typhimurium
Acinetobacter lwoffii	Corynebacterium xerosis	Mycobacterium chelonae	Serratia marcescens
Acinetobacter sp.	Enterobacter aerogenes	Neisseria cinerea	Sphingomonas paucimobilis
Bacillus cereus	Enterobacter cloacae	Nocardia farcinica	Staphylococcus aureus
Bacillus sp.	Enterococcus faecalis	Ocrobactrum anthropi	Staphylococcus epidermidis
Bacillus subtilis	Enterococcus faecium	Parabacteroides distasonis	Staphylococcus haemolyticus
Bacteroïdes fragilis	Enterococcus gallinarum	Porphyromonas endodontalis	Staphylococcus hominis
Bacteroides ureolyticus	Escherichia coli	Propionibacterium acnes	Stenotrophomonas maltophilia
Campylobacter fetus	Fusobacterium nucleatum	Proteus mirabilis	Streptococcus agalactiae
Candida albicans	Fusobacterium sp.	Proteus vulgaris	Streptococcus bovis
Capnocytophaga canimosus	Klebsiella oxytoca	Providencia stuartii	Streptococcus D group
Chlamydia trachomatis	Klebsiella pneumoniae	Pseudomonas aeruginosa	Streptococcus mitis
Citrobacter freundi	Legionella pneumophila	Pseudomonas sp.	Streptococcus parasanguinis
Citrobacter koseri	Listeria sp.	Pseudomonas stutzeri	Streptococcus pneumoniae
Clostridium difficile	Micrococcus luteus	Salmonella arizonae	Streptococcus pyogenes
Clostridium perfringens	Micrococcus sp.	Salmonella enteritidis	Tropheryma whipplei
Corynebacterium ammoniagenes	Mycobacter sp.	Salmonella sp.	Other ongoing

The present and future planet context of our Health interventions is made in a **very rapid changing World** with uncontrolled demographic evolution Highly severe consequences resulting in accelerated uncontrolled destructions of:

- resources & waste production (plastic rivers and oceans
- Fauna (big animals, insects, birds fish etc)
- Flora (deforestation)

Plants and animals suffer to be in a period of coexistence with billions of idiots that think that they control everything

A REAL "One Health meta-approach" implies to urgently consider the planet health (our living milieu)

Consequently what health researchers MUST do?

- We need to generate actions with impact purposes on health and education to try to control the demography
- A better health and education in particular to make young women stronger could impact family planning

Special thanks

• European commission

- USDEP project (2006-10)
- EC,H2020 "IF-EBOLA action" (2014-17)
- EDCTP2 "PANDORA" (2018-22)
- Montpellier University, France
- The French Research Institute for Development
- The French Bank for Investments (BPI)
- The Region Occitanie France
- Lab d'Immuno-Physiopathologie Moléculaire Comparée (LIPMC)
- The ApoH-Technologies engineers-team & Ilias Stefas (CEO)
- Biotechnologies-Développement-Conseil (France, USA, Israel & Japan), Christian Policard (former CEO of Pasteur Institute Business Development & former CEO of Sanofi-Pasteur Diagnostics) cpolicard@biotechdevconseil.com

