

How Zika virus induces congenital microcephaly?

Marc LECUIT

Institut Pasteur Biology of Infection Unit, Inserm U1117

Department of Infectious Diseases and Tropical Medicine Necker-Enfants Malades University Hospital Paris Descartes University

Zika virus, a typical flavivirus...

Zika virus vertical transmission and congenital microcephaly

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Zika Virus Associated with Microcephaly

Jernej Mlakar, M.D., Misa Korva, Ph.D., Nataša Tul, M.D., Ph.D., Mara Popović, M.D., Ph.D., Mateja Poljšak-Prijatelj, Ph.D., Jerica Mraz, M.Sc., Marko Kolenc, M.Sc., Katarina Resman Rus, M.Sc., Tina Vesnaver Vipotnik, M.D., Vesna Fabjan Vodušek, M.D., Alenka Vizjak, Ph.D., Jože Pižem, M.D., Ph.D., Miroslav Petrovec, M.D., Ph.D., and Tatjana Avšič Županc, Ph.D.

Lessler et al., Science 2016

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities

R.W. Driggers, C.-Y. Ho, E.M. Korhonen, S. Kuivanen, A.J. Jääskeläinen, T. Smura,
A. Rosenberg, D.A. Hill, R.L. DeBiasi, G. Vezina, J. Timofeev, F.J. Rodriguez,
L. Levanov, J. Razak, P. Iyengar, A. Hennenfent, R. Kennedy, R. Lanciotti,
A. du Plessis, and O. Vapalahti

Zika virus vertical transmission and congenital microcephaly

Mechanisms of vertical transmission of Zika virus

Anatomy of the maternal-fetal barrier

placental barrier

Ex vivo infection of human placental explants

ZIKV replicates in 3rd trimester human placental explants

NB: CHIKV is a negative control, as it does not replicate in human placenta, and is transmitted vertically only in peripartum by viremic mothers

ZIKV infects Hofbauer cells in human placental explants

ZIKV Infected 72h

Infected cells are CD45+ and CD68+

Actual data from pregnant women with zika...

Pathology of congenital Zika syndrome in Brazil: a case series

Roosecelis Brasil Martines*, Julu Bhatnagar*, Ana Maria de Oliveira Ramos, Helaine Pompeia Freire Davi, Silvia D'Andretta Iglezias, Cristina Takami Kanamura, M Kelly Keating, Gillian Hale, Luciana Silva-Flannery, Atis Muehlenbachs, Jana Ritter, Joy Gary, Dominique Rollin, Cynthia S Goldsmith, Sarah Reagan-Steiner, Yokabed Ermias, Tadaki Suzuki, Kleber G Luz, Wanderson Kleber de Oliveira, Robert Lanciotti, Amy Lambert, Wun-Ju Shieh, Sherif R Zaki

www.thelancet.com Vol 388 August 27, 2016

Mem Inst Oswaldo Cruz, Rio de Janeiro: 1-7, 2016

Zika virus damages the human placental barrier and presents marked fetal neurotropism

Lucia de Noronha¹, Camila Zanluca², Marina Luize Viola Azevedo¹, Kleber Giovanni Luz³, Claudia Nunes Duarte dos Santos^{2/+}

¹Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil ²Fundação Oswaldo Cruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil ³Universidade Federal do Rio Grande do Norte, Instituto de Medicina Tropical, Natal, RN, Brasil

Molecular mechanisms of ZIKV crossing of the placental barrier

Molecular mechanisms of ZIKV-associated microcephaly

Birth of projection neurons

Adapted from Tiberi, Curr Opin Cell Biol 2012

ER stress can activate three distincts UPR pathways

Laguesse *et al.,* Developmental Cell 2015 Godin *et al.,* Trends Neurosci 2016

Working model

ЕІрЗсКО

Laguesse et al., Developmental Cell 2015 Godin et al., Trends Neurosci 2016

Chemical induction of ER stress impairs cortical neurogenesis

ZIKA-induced congenital microcephaly as a result of ER stress?

Science

REPORTS

Cite as: P. L. Chavali et al., Science 10.1126/science.aam9243 (2017).

Neurodevelopmental protein Musashi 1 interacts with the Zika genome and promotes viral replication

Pavithra L. Chavali,^{1+†} Lovorka Stojic,¹⁺ Luke W. Meredith,² Nimesh Joseph,¹ Michael S. Nahorski,³ Thomas J. Sanford,² Trevor R. Sweeney,² Ben A. Krishna,⁴ Myra Hosmillo,² Andrew E. Firth,² Richard Bayliss,⁵ Carlo L. Marcelis,⁶ Susan Lindsay,⁷ Ian Goodfellow,² C. Geoffrey Woods,³ Fanni Gergely¹;

¹Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 ORE, UK. ²Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. ³Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. ⁴Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK. ⁴Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK. ⁴Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands. ⁷Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.

Wu et al., Cell Res 2016

Tang et al., Cell Stem Cell 2016

ZIKA targets cortical apical progenitors

Blazquez, Front Microbiol 2014

17common genes	FC Elp3 mBrain	FC Zika mBrain	FC Zika hNPCs
Slc7a3	9,62	2,38	2,46
Sesn2	7,66	2,15	4,16
Chac1	7,11	2,89	7,93
Eif4ebp1	6,64	2,72	3,73
Atf5	3,78	1,72	2,18
Slc6a9	3,11	1,49	1,63
Asns	2,88	1,55	4,32
Cenpf	2,50	0,80	0,43
Atf4	2,32	1,25	1,19
Cars	2,09	1,49	4,36
Mthfd2	1,80	1,46	4,71
Shmt2	1,68	1,41	3,18
lars	1,62	1,23	2,39
Dpy19l1	0,72	0,79	0,57
Hn1	0,61	0,82	0,77
H19	0,60	1,31	0,45

Human cortex from infected fetuses show signs of ER stress and UPR

Gladwynng et al. Nat Neurosci 2018

ZIKV induces ER stress and UPR activation in HiPSCs

PDI

THEN

1.6

1.4-

1.2-

1.0

0.8-

MOCH

Relative mRNA level

Hoechst/ZIKV/Sox2

ZIKA-induces ER stress and activates UPR in mouse embryos (ICV)

Gladwynng et al. Nat Neurosci 2018

Does UPR induction by ZIKV-infection result in impairment of the neurogenic balance?

Fate mapping of apical progenitors and their direct cell progeny

ICV injection of ZIKV in E12.5 mouse brains In utero electroporation of GFP-expressing plasmids at day 13.5 Fate-mapping of APs and of their direct cell progenies at E14.5

ZIKV infection disrupts the UPR-dependent neurogenic balance

Specificity of ZIKA-induced microcephaly in mouse embryos (IPL)

Nature Commun (2017) Vermillion

ZIKV/ac-caspase 3/Dapi

ZIKV promotes UPR-dependent apoptosis in newborn neurons

Gladwynng et al. Nat Neurosci 2018

ZIKV promotes microcephaly by triggering ER stress

Acknowledgments

Biology of Infection Unit

Thérèse Couderc Grégoire Gessain Morgane Lavina Olivier Disson Laetitia Travier Claire Maudet-Crépin Minhee Kim Hana Kammounn Marouane Kelhoufi Charlotte Gaultier Lei Huang Lukas Hafner

University of Liège

Laurent Nguyen Ivan Gladwyn-Ng Lluis Cordon Barris Christian Alfano Catherine Creppe Giovanni Morelli Nicolas Thelen Michelle America Ikuo K. Suzuki Pierre Vanderhaeghen Marc Thiry

Etienne Simon-Lorière

