

DISSECTING THE IN VIVO ANTIVIRAL MECHANISM(S) OF HIV-SPECIFIC BNABS

Richard A. Koup

Vaccine Research Center

Broadly Neutralizing mAbs in Development

Image by Stewart-Jones, Doria-Rose, Stuckey Adapted from Stewart-Jones et al Cell 2016 and Pancera et al Nature 2014

Antibodies with Improved Potency/Breadth

Multi-clade virus panel (n=208)

bNAbs have anti-viral activity in vivo

Nature 522, 487-491 (25 June 2015)

doi:10.1038/nature14411

Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117

Marina Caskey¹*, Florian Klein¹*, Julio C. C. Lorenzi¹, Michael S. Seaman², Anthony P. West Jr³, Noreen Buckley¹, Gisela Kremer^{4,5}, Lilian Nogueira¹, Malte Braunschweig^{1,6}, Johannes F. Scheid¹, Joshua A. Horwitz¹, Irina Shimeliovich¹, Sivan Ben-Avraham¹, Maggi Witmer-Pack¹, Martin Platten^{4,7}, Clara Lehmann^{4,7}, Leah A. Burke^{1,8}, Thomas Hawthorne⁹, Robert J. Gorelick¹⁰, Bruce D. Walker¹¹, Tibor Keler⁹, Roy M. Gulick⁸, Gerd Fätkenheuer^{4,7}, Sarah J. Schlesinger¹ & Michel C. Nussenzweig^{1,12}

Clinical Use of Antibodies

Prevention and Treatment are Different

Prevention

 Prevent acquisition of infection in high risk individuals

Treatment

- Kill infected cells; reduce viral reservoir
 - Maintain viral suppression induced by ARV

Perelson and Ho, original model

Perelson et al. Science 1996

Plasma Virus Decay After mAb Treatment in HIV Infection Suggests Neutralization

Days after VRC01 infusion

Lynch RM et al. Sci Transl Med 2015

What if we alter ADCC activity?

Perelson et al. Science 1996

What if we alter ADCC activity?

Perelson et al. Science 1996

Modulating effector function through FcyR binding

Name	Mutation	Comment	Reference
N297A	N297A	Reduced interactions with all FcyRs	Leabman et al, Mabs (2013) 896-903
LALA	L234A/L235A	Reduced binding to FcγR1a, FcγRIIa, FcγRIIIa and FcγRIIIb	Hessel et al, Nature (2007) 449, 101- 104
K322A	K322A	Reduced C1q and C3 binding	Hessel et al, Nature (2007) 449, 101- 104
LALA/K322 A	L234A/L235A/K322A	Combination of LALA and KA mutations	
FES	L234F/L235E/P331S	Reduced FcγR and C1q binding	Oganesyan et al, Acta Crystallogr D Biol Crystallogr (2008) 64 (700-704)
DEL	S239D/I332E/A330L	Reduced FcyRIIb and enhanced FcyRIIIa binding to improve ADCC	Lazar et al, PNAS (2006) 103, 4005- 4010
DEA	S239D/I332E/G236A	Improved FcyRIIa/FcyRIIb binding ratio to improve ADCC	Richards et al, Mol Cancer Ther (2008) 7, 2517-27
FT	H268F/S324T	Increased C1q binding without affecting FcγR	Moore et al, mAbs (2010) 181-189
FTDE	H268F/S324T/S239D/I332E	Increased binding to C1q and FcγR	Moore et al, mAbs (2010) 181-189

Predominantly tested in human IgG – human FcR context Some mutants tested in human IgG – rhesus FcR context (Ackerman et al)

FcyR Binding Sites in CH2 Domain

In Vitro Characterization of Fc Mutants

Not shown: no difference between wt and LS ADCC assays with NK cells sorted from rhesus macaque blood Rhesus macaque serum used as source of C1q

In Vitro Characterization of Fc Mutants

1) Neutralization

IC80 un/ml

			1000, µg/iiii
Virus	VRC07-523-LS	VRC07-523- LS/LALA	VRC07-523- LS/DEL
Q461.e2.SG3	0.890	0.742	0.559
620345.c1.SG3	>50	>50	>50
T250-4.SG3	>50	>50	>50
H086.8.SG3	>50	>50	>50
CNE19.SG3	0.302	0.270	0.192
UG024.2.SG3	0.344	0.255	0.207
SHIV SF162P3	1.220	1.140	0.811

Not shown: no difference between wt and LS ADCC assays with NK cells sorted from rhesus macaque blood Rhesus macaque serum used as source of C1q

VRC07-523LS Antiviral Study in NHPs

Plasma Virus Loads

No MAb n=3 mAb114-LS (20 mg/kg) n=3 VRC07-523LS (20 mg/kg) n=9 VRC07-523-LS/LALA (20 mg/kg) n=10 VRC07-523-LS/DEL (20 mg/kg) n=10

- Virus loads were stable prior to mAb administration
- All monkeys given VRC07-523xx showed a decline in plasma virus load
- None reached undetectable virus load (good data for calculating kinetics of plasma virus decline)

Plasma Virus Loads

No MAb n=3 mAb114-LS (20 mg/kg) n=3 VRC07-523LS (20 mg/kg) n=9 VRC07-523-LS/LALA (20 mg/kg) n=10 VRC07-523-LS/DEL (20 mg/kg) n=10

- Virus load decline started to level off after 4 days in some monkeys
- Virus loads varied considerably during the first 6-24 hours in all groups
- Virus load from 1-4 days (5 data points) was used to calculate the slope of plasma virus decline

Normalized Plasma Virus Load Data

Why doesn't increased FcγR binding lead to increased ADCC and a more rapid decline in plasma virus?

ADCC effector cells are "armed" with antibody after infusion

FcyR-expressing cells are pre-armed with DEL mAb

Time post mAb Infusion (hours)

Transcriptomic analysis of NK Cells

NK cells were sorted from monkeys before and 1h and 3d after Ab infusion for RNAseq

Pathways induced 1 hour after VRC07-523LS/DEL

Network analysis shows TRAIL-mediated apoptosis and FcyRIII-mediated necroptosis are also induced in NK cells

Prozone Effect

High affinity receptor occupancy

Multivalent binding - anergy

Can this lead to blocking of *in vivo* **ADCC?**

Maybe ADCC is not the operative effector mechanism

- Antibody-dependent cellular phagocytosis
 - Should have opposite effects of LALA and DEL
- Complement-dependent virolysis

VRC07-523LS VRC07-523LS/LALA VRC07-523LS/DEL

Further work is needed to determine if decreased complement binding results in the decreased antiviral effect of LALA and DEL modified antibodies

The *in vivo* antiviral effect of VRC07-523 is mediated by a combination of both plasma virus neutralization (entry inhibition) and Fc-dependent functions

- An Fc modification which enhances FcγR affinity had an unexpected effect of decreasing overall *in vivo* anti-viral activity
- Whether this will limit the use of antibodies with similar mutations in cure strategies needs to be determined
- Further work is needed to define the mechanism of the decreased anti-viral effect of DEL modified antibodies *in vivo*

What About the Latent Reservoir?

Acknowledgements

VRC Clinical Trials Program

Charla Andrews Preeti Apte Alison Beck Nina Berkowitz **Eugeania Burch** Maria Burgos Florez **Cristina Carter** Grace Chen **Emily Coates** Pam Costner **Josephine Cox** Jennifer Cunningham Aba Eshun Martin Gaudinski Ingelise Gordon **Carmencita Graves** Mercy Guech Cynthia Starr Hendel Somia Hickman **Renunda Hicks** LaSonji Holman Kate Houser

Rebecca Lampley Brenda Larkin Lam Le Floreliz Mendoza Laura Novik Mark O'Callahan Abidemi Ola Iris Pittman Sarah Plummer Ro Rothwell Jamie Saunders FIlie Seo Sandra Sitar **Stephanie Taylor Cora Trelles Cartagens** Olga Trofymenko Olga Vasilenko Xiaolin Wang Wil Whalen Pernell Williams Galina Yamshchikov

Vaccines for Life

Mangai Asokan Joana Dias Amarendra Pegu Wanwisa Promsote John Mascola **Barney Graham** Julie Ledgerwood Peter Kwona **Robert Bailer Danny Douek** Nicole Doria-Rose Sandeep Narpala Mark Louder Sijy O'Dell Rebecca Lynch Krisha McKee Adrian McDermott Abe Mittelman Marybeth Daucher Lucio Gama Gary Nabel

VRC Regulatory Science Carrie Laurencot Michelle Conan-Cibotti Flo Kaltovich Judy Stein

VRC Product Development

Frank Arnold Richard Schwartz David Lindsay Gretchen Scheiber

HVTN, HPTN

HVTN 104 and AMP study teams Mike Cohen Larry Corey Shelly Karuna Ken Mayer

<u>NIAID</u>

Carl Dieffenbach Mary Marovich Sarah Read Sheryl Zwerski Diana Finzi Randy Tressler Mary Allen Marga Gomez Stephen Migueles Mark Connors

Case Western

Rafick Sekaly Slim Fourati

