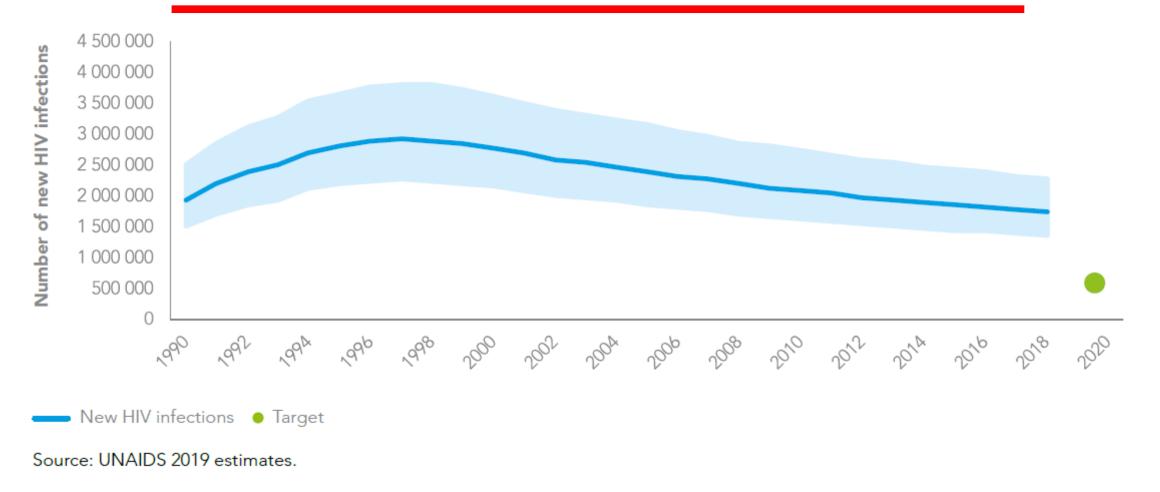


HIV vaccines at the fork in the road: "Just take it" says that great American philosopher, Yogi Berra

Larry Corey, MD

Principal Investigator, NIAID supported HIV Vaccine Trials Network (HVTN) Past President and Director, Fred Hutchinson Cancer Research Center Member, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center Professor, Laboratory Medicine and Medicine, University of Washington



HIV is Unfortunately Alive and Well Throughout the World

- Globally there are 1.4 million new infections yearly
 - This is 5,000 acquisitions a day
- 180,000 infants a year still infected
- 37 million people living with HIV (76 million since the epidemic started)
- 770,000 HIV related deaths in 2018
- US has "tolerated" 35,000 40,000 new infections a year

ADULTS AND CHILDREN NEWLY INFECTED WITH HIV: 1990–2018

Source: UNAIDS 2019

The Need for an HIV Vaccine

- Test and treat is an important strategy for individual health and can have an effect on transmission.
- U=U is correct.
- However, long term adherence and prompt identification of HIV infection is just not translatable and scalable on a large scale.
 - It has not eliminated mother to child transmission, which has a very definable exposure.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

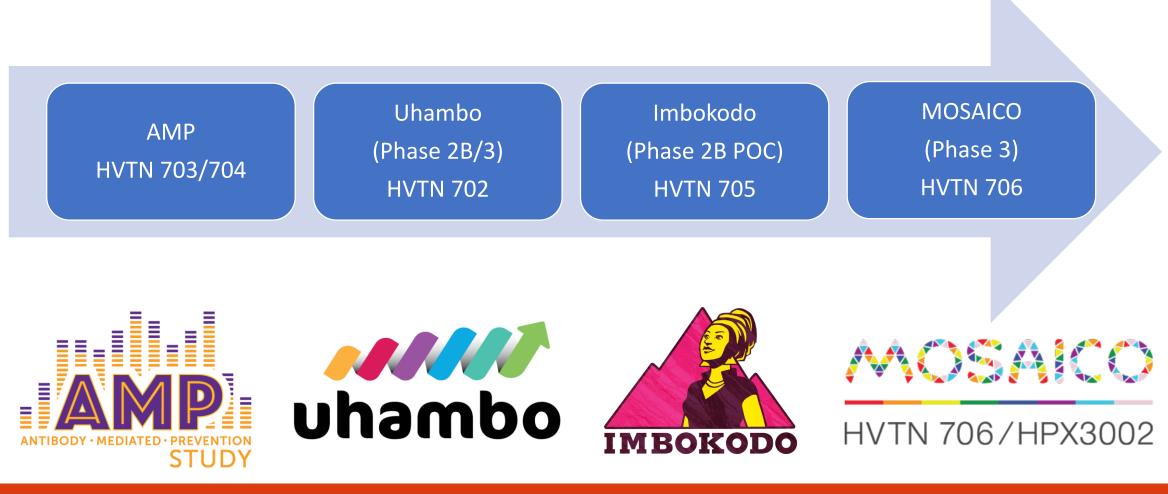
HIV Testing and Treatment with the Use of a Community Health Approach in Rural Africa

D.V. Havlir, L.B. Balzer, E.D. Charlebois, T.D. Clark, D. Kwarisiima, J. Ayieko, J. Kabami, N. Sang, T. Liegler, G. Chamie, C.S. Camlin, V. Jain, K. Kadede, M. Atukunda, T. Ruel, S.B. Shade, E. Ssemmondo, D.M. Byonanebye, F. Mwangwa, A. Owaraganise, W. Olilo, D. Black, K. Snyman, R. Burger, M. Getahun, J. Achando, B. Awuonda, H. Nakato, J. Kironde, S. Okiror, H. Thirumurthy, C. Koss, L. Brown, C. Marquez, J. Schwab, G. Lavoy, A. Plenty, E. Mugoma Wafula, P. Omanya, Y.-H. Chen, J.F. Rooney, M. Bacon, M. van der Laan, C.R. Cohen, E. Bukusi, M.R. Kamya, and M. Petersen

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

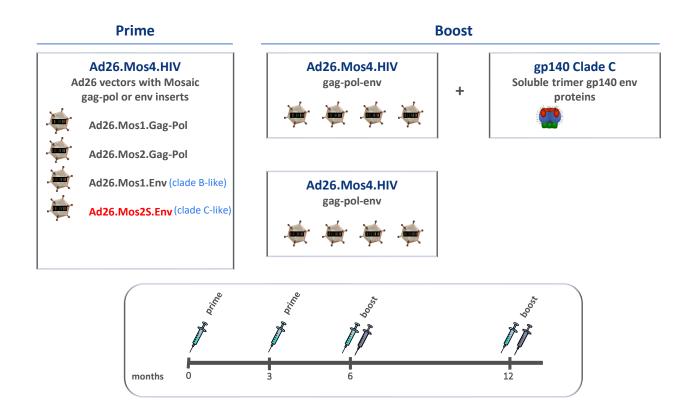
Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana


J. Makhema, K.E. Wirth, M. Pretorius Holme, T. Gaolathe, M. Mmalane,
E. Kadima, U. Chakalisa, K. Bennett, J. Leidner, K. Manyake, A.M. Mbikiwa,
S.V. Simon, R. Letlhogile, K. Mukokomani, E. van Widenfelt, S. Moyo,
R. Lebelonyane, M.G. Alwano, K.M. Powis, S.L. Dryden-Peterson, C. Kgathi,
V. Novitsky, J. Moore, P. Bachanas, W. Abrams, L. Block, S. El-Halabi,
T. Marukutira, L.A. Mills, C. Sexton, E. Raizes, S. Gaseitsiwe, H. Bussmann,
L. Okui, O. John, R.L. Shapiro, S. Pals, H. Michael, M. Roland, V. DeGruttola,
Q. Lei, R. Wang, E. Tchetgen Tchetgen, M. Essex, and S. Lockman

Effect of Universal Testing and Treatment on HIV Incidence — HPTN 071 (PopART)

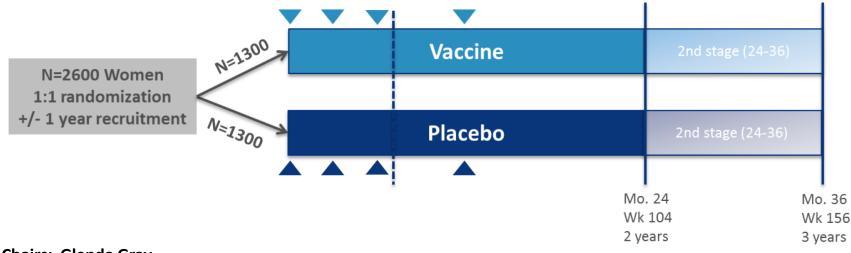
R.J. Hayes, D. Donnell, S. Floyd, N. Mandla, J. Bwalya, K. Sabapathy, B. Yang, M. Phiri, A. Schaap, S.H. Eshleman,
E. Piwowar-Manning, B. Kosloff, A. James, T. Skalland, E. Wilson, L. Emel, D. Macleod, R. Dunbar, M. Simwinga,
N. Makola, V. Bond, G. Hoddinott, A. Moore, S. Griffith, N. Deshmane Sista, S.H. Vermund, W. El-Sadr,
D.N. Burns, J.R. Hargreaves, K. Hauck, C. Fraser, K. Shanaube, P. Bock, N. Beyers, H. Ayles, and S. Fidler,
for the HPTN 071 (PopART) Study Team

Current Phase 2B/3 HIV Vaccine Efficacy Trials


HIV VACCINE

HVTN 702 Schema: 5400 South Africans (18-35 yrs)

Group	N*		Prin	nary vaccine regimen	Boosters			
		Month 0	Month 1	Month 3	Month 6	Month 12	Month 18	
1	2700	ALVAC-HIV (vCP2438)	ALVAC-HIV (vCP2438)	ALVAC-HIV (vCP2438) ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59 gp120/MF59		ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59	
2	2700	Placebo	Placebo	Placebo + Placebo	Placebo + Placebo	Placebo + Placebo	Placebo + Placebo	
Total	5400							


HVTN 705/HPX2008 Mixture of 4 mosaic Ad26 constructs + gp140 Clade C boost

Chairs: Glenda Gray, Co-chairs: Susan Buchbinder, Kathy Mngadi and Frank Tomaka

HVTN 706/HPX3002 Schema

HVTN 706/HPX3002

TRIALS NETWORK

Table:	Va	ccination Schedule			
Group	Ν	Month 0	Month 3	Month 6	Month 12
				Ad26.Mos4.HIV	Ad26.Mos4.HIV
1	1.900	Ad26.Mos4.HIV	Ad26.Mos4.HIV	+	+
1	1,900	Au20.10084.111 v		Clade C gp140, Mosaic	Clade C gp140, Mosaic
				gp140, adjuvanted	gp140, adjuvanted
				Placebo	Placebo
2	1,900	Placebo	Placebo	+	+
				Placebo	Placebo

Total dose of Ad26.Mos4.HIV is 5x1010 viral particles (vp)/0.5 mL injection.

Clade C gp140, Mosaic gp140, adjuvanted: adjuvanted protein formulation with a dosage strength of 80 mcg Clade C protein, 75 mcg Mosaic protein and 425 mcg aluminum (as aluminum phosphate adjuvant). Note: previously the dose of Clade C gp140 and/or Mosaic gp140 was reported as mcg of glycoprotein: 125 mcg Clade C gp140 and 125 mcg Mosaic gp140 glycoprotein correspond with 80 mcg and 75 mcg of protein, respectively.

Ongoing HVTN Vaccine Efficacy Studies

<u>Trial</u>	Products	N	<u># of sites</u>	Population	<u>Countries</u>	Public/Private Partnership	Dates for Data	\backslash
HVTN 702	ALVAC/gp120	5400	14	70:30 split women & men	South Africa	P5	Finishes stage 2 when 50% entrants hit 24 months – April 2020	
HVTN 705	Ad26/gp140	2600	24	Women	Malawi, Mozambique, South Africa, Zambia, Zimbabwe	Janssen/J&J and NIAID/HVTN	May 2021	
HVTN 706	Ad26/gp140	3800	55	MSM, TG	Argentina, Brazil, Italy, Mexico, Peru, Poland, Spain, US	Janssen/J&J and NIAID/HVTN	October 2022	

9/30/2019

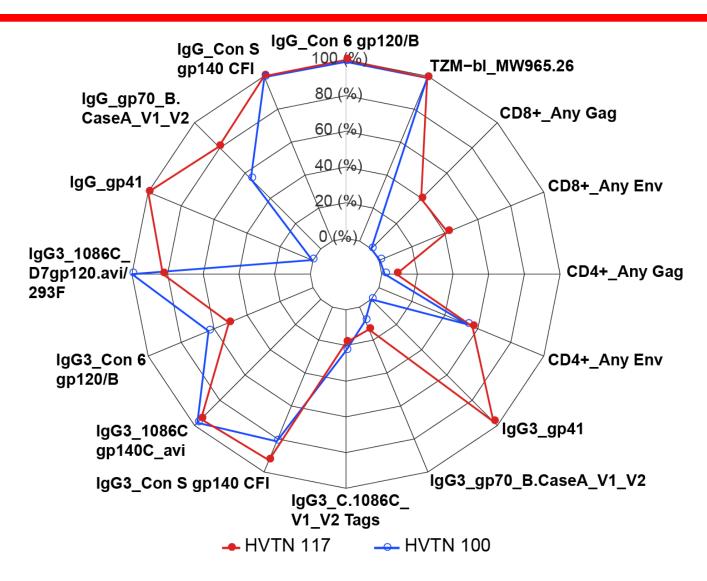
Why separate trials of non-neutralizing vaccine approaches?

- Correlates of protection have some overlap but there are many differences.
 - RV144/HVTN 702 V2 loop, gp120 binding, ADCC and ADCP (recent) and HIV specific CD4+ T cell responses
 - Ad26 regimen: gp140 binding; V2 (+/-) ADCP and ELISPOT
- The magnitude and epitope specific responses and breadth differ.
- This overlap and diversity improve the ability to define what non-neutralizing immune responses are correlated and what areas of the viral envelope are susceptible to clinically effective immune pressure.

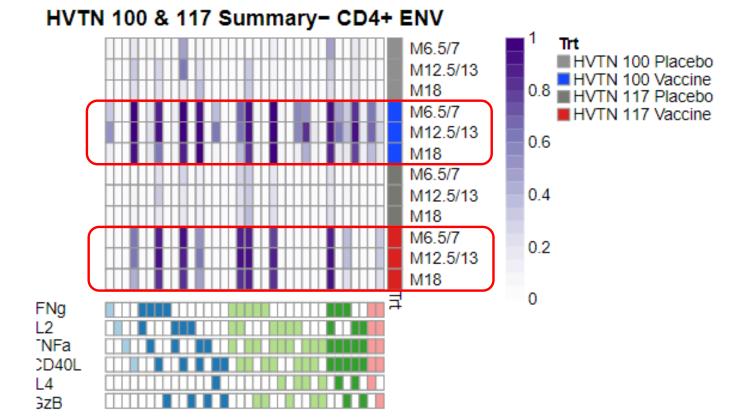
Comparison of immune responses between HVTN 702 and HVTN 705 regimens

Overview

	Group			Booster*				
		Ν	Week 0	Week 4	Week 12	Week 24	Week 52	
	1	210	ALVAC-HIV (vCP2438)	ALVAC-HIV (vCP2438)	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59 [®]	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59 [®]	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59 [®]	
	2	42	Placebo	Placebo	Placebo + Placebo	Placebo + Placebo	Placebo + Placebo	
	Total	252			-	•	-	


HVTN 100 Schema (part A) - Group 1 corresponds to HVTN 702 regimen.

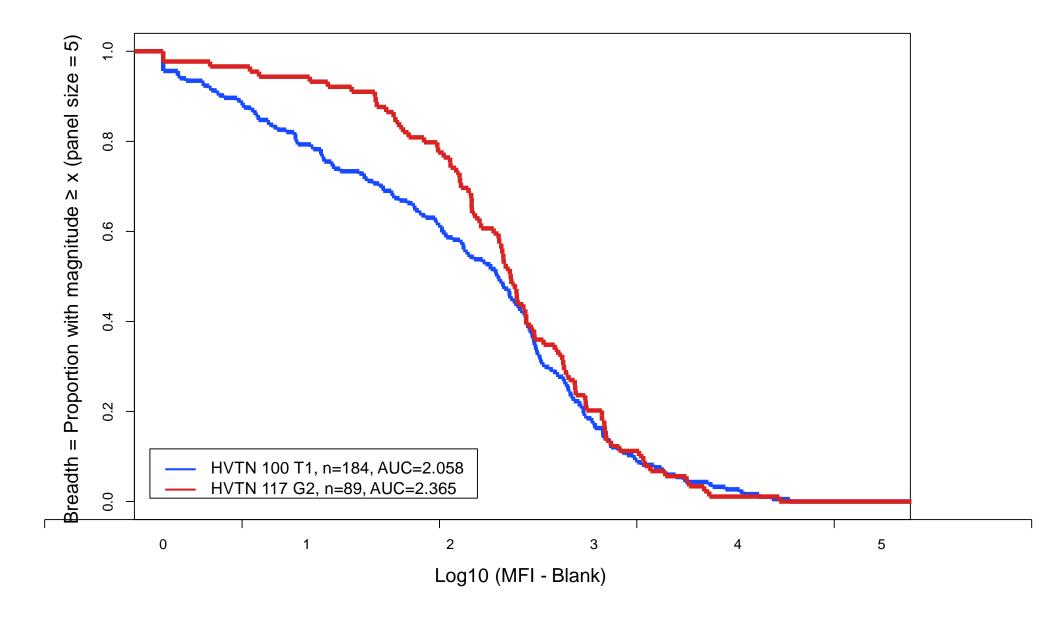
HVTN 117/HPX2004 schema - Group 2A corresponds to HVTN 705 regimen


Group	Subgroup	N	Week 0	Week 12	Week 24	Week 48	
					Ad26.Mos4.HIV	Ad26.Mos4.HIV	
	A	110	Ad26 Mos4 HIV	Ad26 Mos4 HIV	+	+	
Group 2					Clade C gp140 (250 mcg + adjuvant) ^a	Clade C gp140 (250 mcg + adjuvant) ^a	
82					Placebo	Placebo	
	В	22	Placebo	Placebo	+	+	
					Placebo	Placebo	

will be 0.425 mg/0.5 mL dose.

Spider plot comparing prevalence and magnitude of HVTN 702 & 705 regimens based upon the phase 2 go/no-go studies HVTN 100 (702 regimen) & HVTN 117 (705 regimen)

Heatmap summarizing polyfunctionality to vaccine-matched Env

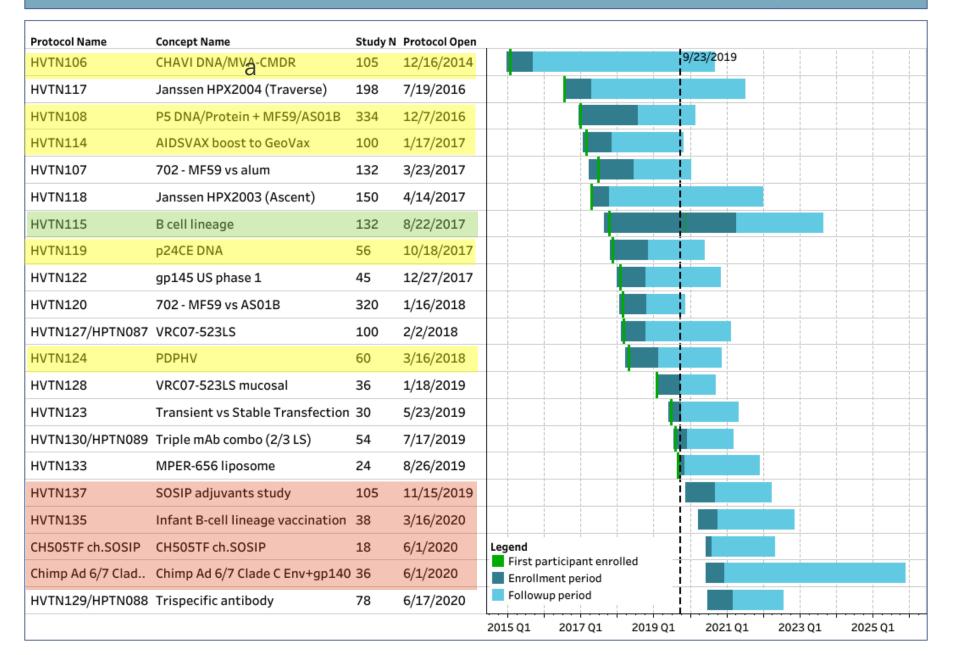

HVTN 100 vs 117 Magnitude-Breadth IgG Binding Antibody Response at Mo6.5/7 to Extended gp120 clade C breadth (mismatched) among Vaccine Arms, Per Protocol Cohort,1:50 diluti

Antigen Panel: 1394C9_G1.D11gp120.avi, 1428_D11gp120.avi/293F, 1641A7_D11gp120.avi/293F, CAP210_D11gp120.avi/293F, CAP45_D11gp120.avi/293F, CH505TF_D7gp120.avi/293F, Ce0042_D11gp120.avi/293F, Du156_D11gp120.avi/293F

SOURCE: SCHARP cyu /trials/vaccine/p100/analysis/lab/117_comparisons/code/figures_mb.r (Sep 25 13:34 2019)

HVTN 100 vs 117 Magnitude-Breadth IgG Binding Antibody Response at Mo6.5/7 to V1V2 clade C breadth (mismatched) among Vaccine Arms, Per Protocol Cohort,1:50 dilution

Antigen Panel: gp70-001428.2.42 V1V2, gp70-7060101641 V1V2, gp70-BF1266_431a_V1V2, gp70-BJOX002000.03.2 V1V2, gp70-CAP210.2.00.E8 V1V2 SOURCE: SCHARP cyu /trials/vaccine/p100/analysis/lab/117_comparisons/code/figures_mb.r (Sep 25 13:34 2019)


Implications of These Timelines on the HIV Vaccine Portfolio

- The two trials are quite harmonized regarding studies of Correlates of Protection.
 - The potential to define a correlate that is associated with partial efficacy is quite high if there is efficacy of at least 25% in either trial.
- The HVTN 702 and HVTN 705/706 studies will define the future of the nonneutralizing approach; it will be very hard to muster any more shots on goal for any non-neutralizing regimens until these studies are analyzed and the results understood.
 - In fact, unless NHP studies show some magnificent data from a regimen or that the combination of a neutralizing based regimen trimer is enhanced by a non-neutralizing regimen, advanced clinical development of non neutralizing vaccines will be difficult to muster using NIH funding.
 - The above does not include CMV; Chimp Ad RNA based approaches

Protocol pipeline: Phase 1 studies

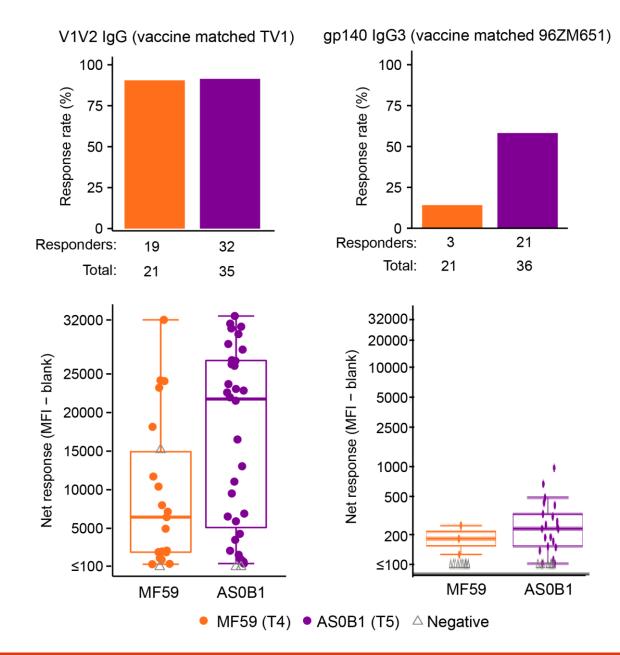
September 23, 2019 1:19 PM

Comment Regarding HVTN 702

- Unlike HVTN 705/706, there is little commitment from Sanofi or GSK to do anything "at risk" to lead to expeditious commercialization if there is success in HVTN 702.
- Looking to bring in outside manufacturer to do the technical development required to bring the manufacturing process up to required standards (years).
- The increased immunogenicity with DNA and AS01B does provide an approach for furthering the development of this regimen during this prolonged manufacturing development timeline.
- Evidence of a correlate would allow bridging to a regimen using AS01B.
- Need some efficacy to make this happen.

9/30/2019

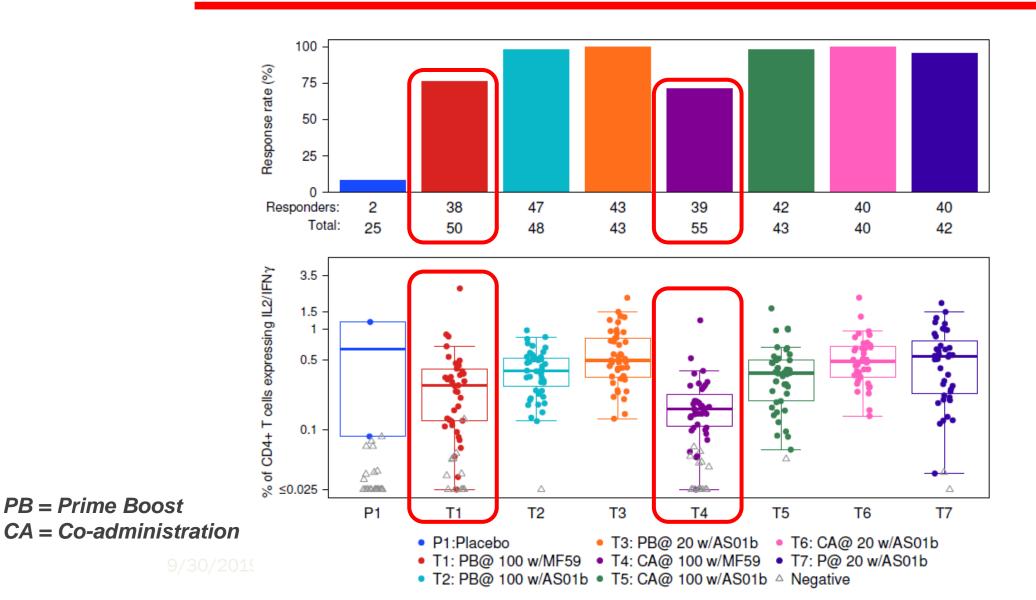
Group	Group N Dose of each protein		Deltoid	Month 0 (Day 0)	Month 1 (Day 28)	Month 3 (Day 84)	Month 6 (Day 168)
			Left	DNA	DNA	DNA	DNA
1	30	100 mcg	Right	Placebo + Placebo*	Placebo + Placebo*	Protein/MF59 + Placebo*	Protein/MF59 + Placebo*
2	•	•	Left	DNA	DNA	DNA	DNA
	50	100 mcg	Right	Placebo + Placebo*	Placebo + Placebo*	Protein/AS01 _B + Placebo*	Protein/AS01 + Placebo*
3			Left	DNA	DNA	DNA	DNA
	50	20 mcg	Right	Placebo + Placebo*	Placebo + Placebo*	Protein/AS01 _B + Placebo*	Protein/AS01 + Placebo*
4	30	•	Left	DNA	DNA	Placebo	DNA
		100 mcg	Right	Protein/MF59 + Placebo*	Protein/MF59 + Placebo*	Placebo + Placebo*	Protein/MF59 + Placebo*
		100 mcg	Left	DNA	DNA	Placebo	DNA
5	50		Right	Protein/AS01 _B + Placebo*	Protein/AS01 _B + Placebo*	Placebo + Placebo*	Protein/AS01 + Placebo*
	•	•	Left	DNA	DNA	Placebo	DNA
6	50	20 mcg	Right	Protein/AS01 _B + Placebo*	Protein/AS01 _B + Placebo*	Placebo + Placebo*	Protein/AS01 + Placebo*
			Left	Placebo	Placebo	Placebo	Placebo
7	50	20 mcg	Right	Protein/AS01 _B + Placebo*	Protein/AS01 _B + Placebo*	Placebo + Placebo*	Protein/AS01 + Placebo*
		•	Left	Placebo	Placebo	Placebo	Placebo
8	24	N/A	Right	Placebo + Placebo*	Placebo + Placebo*	Placebo + Placebo*	Placebo + Placebo*


HVTN 108 Schema

HIV VACCINE

TRIALS NETWORK

* Two distinct placebo volumes for protein/adjuvant will be needed to maintain the blind since Protein/AS01B and Protein/MF59 consist of different injection volumes.



9/30/2019

HVTN 108 DNA/gp120 clade C antigens (702): ASO1B adjuvant increases antibody responses associated with effective immunity

Courtesy G Tomaras and the HVTN 108 Study Team (Nigel Garrett, Chair)

HVTN 108 + 111 ICS CD4+ IL2/IFNγ Expression in Response to ANY HIV at M6.5 DNA Prime – gp120 (clade C TV-1/1086) Boost

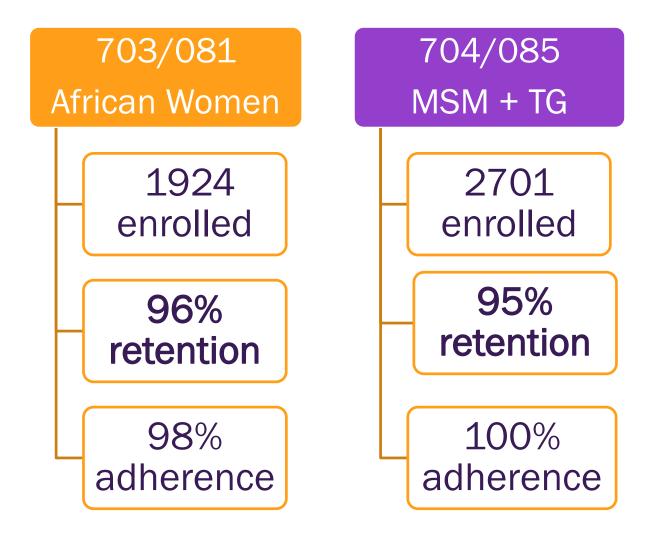
Entering the Era of Neutralization

Passive and Active Immunization

Passive Antibody Prevention Phase IIB Efficacy Studies

AMP = Antibody Mediated Prevention

Can a passively infused monoclonal antibody prevent HIV-1 infection in high risk adults: MSM in Americas & heterosexual women in sub-Saharan Africa


- Placebo controlled trial of VRC01 mAb (IV), given on 8 weekly schedule
- Two cohorts:
 - 2,400 MSM + TG in North & South America (HVTN 704/HPTN 085)
 - 1,900 Women in sub-Saharan Africa (HVTN 703/HPTN 081)
- Both trials opened in April/May 2016
- 703/081 Accrued September 20, 2018 (End July 2020)
- 704/085 Accrued October 5, 2018 (End July 2020)

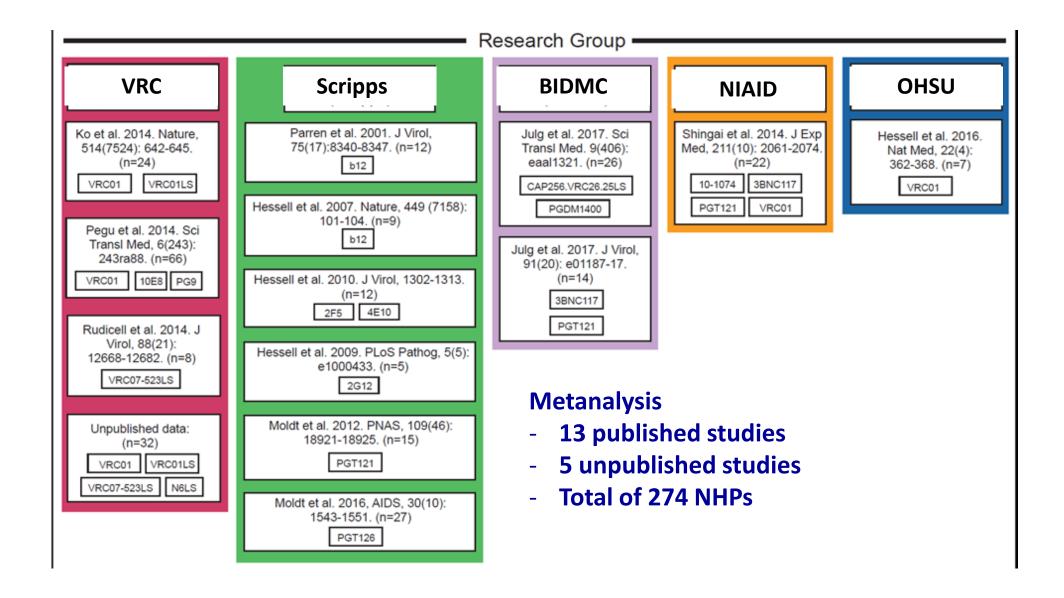
Chairs: Lawrence Corey, HVTN Mike Cohen, HPTN Co-chairs: Srilatha Edupuganti Nyaradzo Mgodi

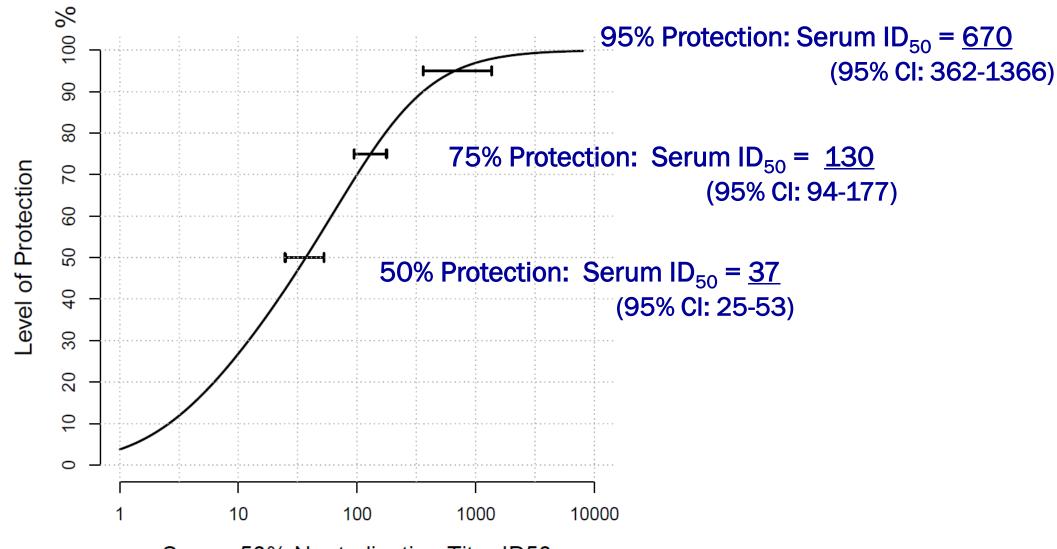
Enrollment and Retention Updates

Ongoing HVTN Vaccine Efficacy Studies

<u>Trial</u>	Products	<u>N</u>	<u># of sites</u>	Population	<u>Countries</u>	Public/Private Partnership	Dates for Data	
HVTN 702	ALVAC/gp120	5400	14	70:30 split women & men	South Africa	P5	Finishes stage 2 when 50% entrants hit 24 months – April 2020	
HVTN 705	Ad26/gp140	2600	24	Women	Malawi, Mozambique, South Africa, Zambia, Zimbabwe	Janssen/J&J and NIAID/HVTN	May 2021	
HVTN 706	Ad26/gp140	3800	55	MSM, TG	Argentina, Brazil, Italy, Mexico, Peru, Poland, Spain, US	Janssen/J&J and NIAID/HVTN	October 2022	
AMP HVTN 703 HPTN083	VRC01	1901	15	Women	Botswana, Kenya, Malawi, Mozambique, South Africa, Tanzania, Zimbabwe	NIAID	July 2020	
HVTN 704	VRC01	2705	25	MSM/TG	Brazil, Peru, US	NIAID	July 2020	

9/30/2019

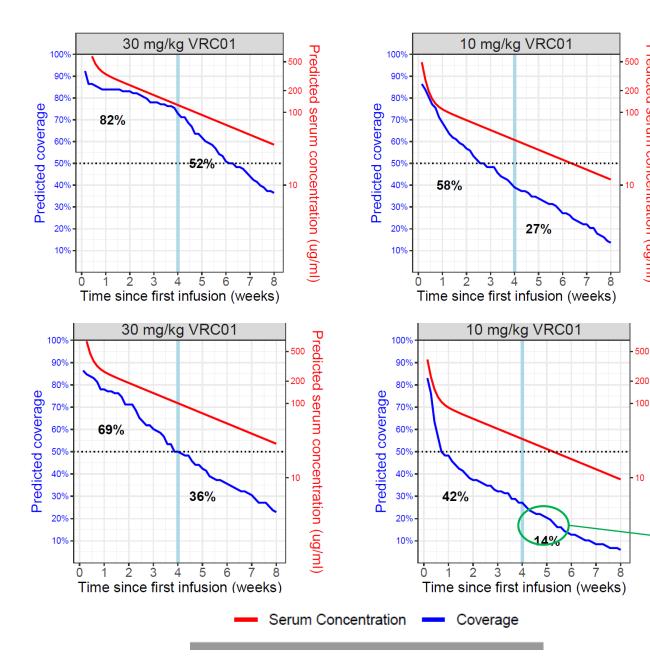

What level of antibody is needed to protect?


Metanalysis of NHP passive antibody challenge studies:

- Single infusion of mAb (various mAbs)
- SHIV challenge 1-5 days after mAb infusion

Serum neutralization level on the day of challenge (vs challenge SHIV) – strongly correlates with protection

Ying Huang, Yunda Huang, Peter Gilbert (FHCRC) Larry Corey (FHCRC) Amar Pegu VRC, NIAID Devin Sok, Dennis Burton Scripps



Serum 50% Neutralization Titer ID50

 $\bigcirc \bigcirc$

10/24/2018

ORK

Percent of 118 Clade B isolates (based on their in vitro IC50) that would be sensitive to VRC01 at a neutralizing threshold in serum of 1:50 or 1:100 (blue lines)

Serum neut threshold of 1:50 ¢

Predicted serum

concentration (ug/ml)

Predicted

serum

concentration (ug/ml)

Drop off in coverage occurs:

- **Over time as expected**
- With lower dose of 10 mg/kg

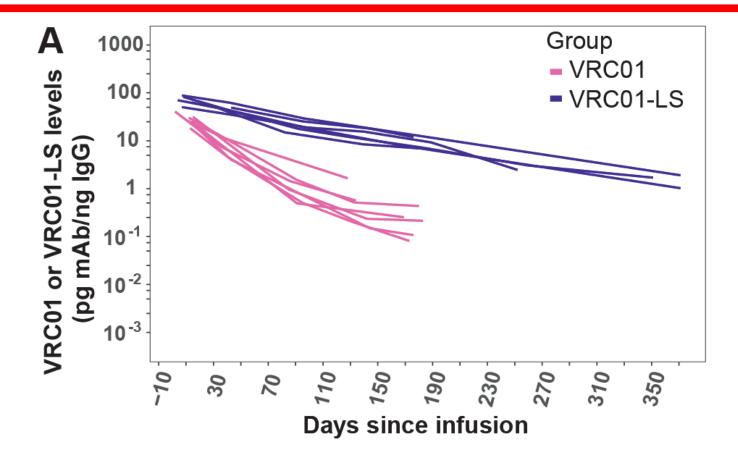
Serum neut threshold of 1:100

Drop off in coverage when serum neutralization threshold goes from 1:50 to higher threshold of 1:100

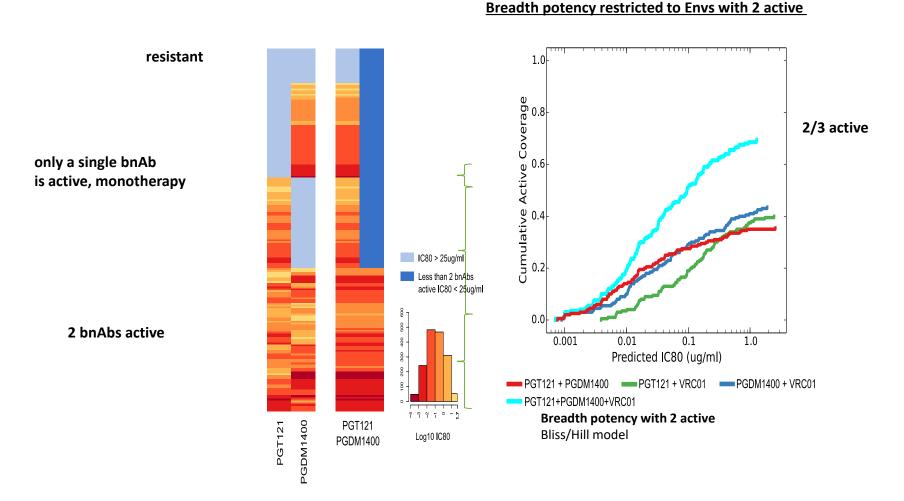
Bolded %'s are average coverage in the first or second 4 weeks

E.g. interpretation: Expect 14% of exposures during the second 4 weeks post-infusions to be with enough VRC01 on board to block HIV-1 transmission

Red lines show predicted geometric mean VRC01 concentration over time based on population PK modeling


Moving to Self Administered Subcutaneous Injections

Extended Half-Life Preparations



Enhanced half-life and augmented antibody levels in cervical biopsies of VRC01-LS vs. VRC01 in HVTN 116

Relative concentrations of antibody extracted from cervical biopsy tissue. Note the much higher and more stable mAb levels with the LS mutation (purple lines) vs. parental (pink lines).

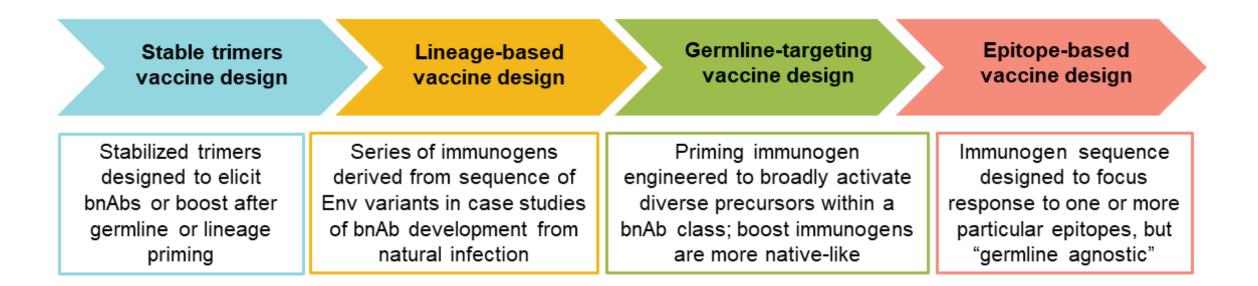
Increased Coverage by Multiple bnAbs

- If virus is targeted by multiple bnAbs, then escape is difficult. For chronic infections, higher coverage with multiple bnAbs active implies higher fraction of viral quasispecies targeted (e.g. patients with V3g-type responses might have V3g resistance).
- Most viruses actively neutralized by 1 bnAb in combination for 2 bnAb combinations. Need 3 bnAbs to neutralize most viruses with at least 2 bnAbs active.

Multiclade Virus Panel

	Triple C	Combos	Double	Combos			Single mAbs		
IC80	VRC07-523-LS +PGT121 +PGDM1400 Theoretical	3BNC117 +10-1074 +PGDM1400 Theoretical	VRC07-523-LS +PGT121 Theoretical	3BNC117 +10-1074 Theoretical	VRC07-523-LS	PGT121	3BNC117	10-1074	PGDM1400
# Viruses		208	208	208	208	208	208	208	208
% VS Neutralized									
IC80 <50ug/ml	99	99	97	92	96	58	80	60	74
IC80 <10ug/ml	99	98	96	91	94	55	78	59	72
IC80 <1.0ug/ml	94	96	88	84	83	49	68	52	63
IC80 <0.1ug/ml	67	65	46	35	23	29	14	26	44
For Sensitive Viruses Only:									
Median IC80	0.042	0.047	0.118	0.156	0.238	0.099	0.298	0.126	0.047
Geometric Mean	0.049	0.052	0.133	0.167	0.257	0.157	0.318	0.157	0.069
For All Viruses:									
Median IC80	0.047	0.048	0.123	0.174	0.257	1.57	0.425	0.884	0.209
Geometric Mean	0.055	0.057	0.163	0.259	0.323	1.75	0.861	1.57	0.392

VITL/VRC Multiclade 208 Virus Panel



The bnAb Inducing Immunogen Era

Design approaches to elicit bnAbs

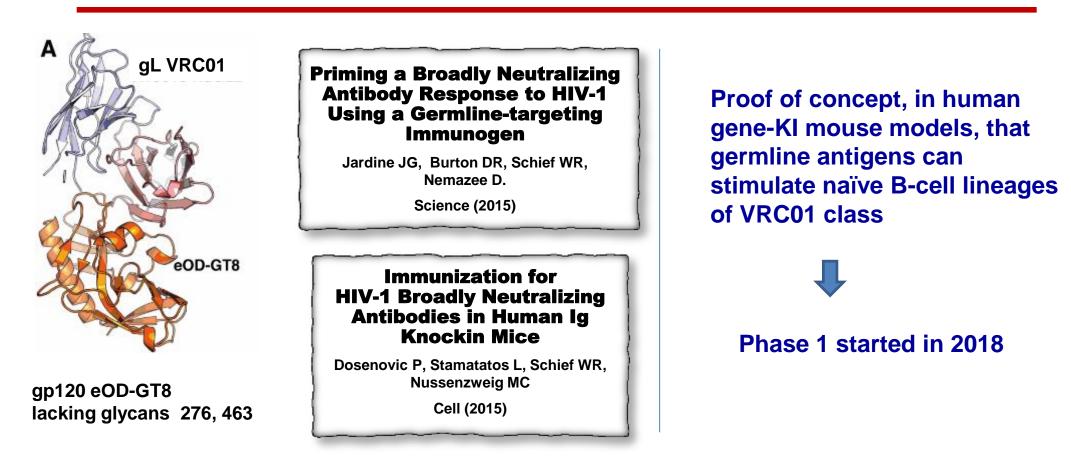
Vaccine – challenge in NHP (level of serum neutralization needed)

Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers.

Pauthner M, Nkolola J, Havenar-Daughton C, Murrell B, Reiss S, Bastidas R, Prévost J, Nedellec R, von Bredow B, Abbink P, Cottrell CA, Kulp DW, Tokatlian T, Nogal B, Bianchi M, Li H, Lee JH, Butera ST, Evans DT, Hangartner L, Finzi A, Wilson IA, Wyatt RT, Irvine DJ, Schief WR, Ward AB, Sanders RW, Crotty S, Shaw GM, Barouch DH, <u>Burton DR.</u>

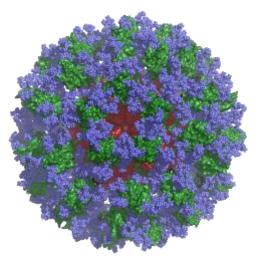
- Immunized with BG505 trimer
- Intrarectal challenge SHIV BG505
- $\circ~$ Serum neutralization titer associated with protection
 - > 50% protection with serum ID50 neutralization titer of <u>1:90</u>
 - 90% protection, an ID50 titer of <u>1:476</u>
 - Passive Ab studies
 - 50% protection with titer <u>1:37</u>
 - 95% protection with titer of <u>1:670</u>

Estimated goal: Vaccine elicited serum neutralization titer of ~ 1:100


HIV Trimers in GMP or phase 1 trials

Immunogen	Design intent, features	Potential uses	Organization
Trimers			•
Cornell BG505.664 SOSIP	Induces autologous nAbs; adjuvant	Trimer boost	Cornell
	evaluation (NHP, humans) informs model		
Cornell BG505.664 DS-SOSIP	Low affinity for CD4, less induction of V3	Has same FP8 sequence at	VRC
VRC 4571	and CD4i response	VRC FP-TT - so can be used as	
		boost	
rAd4 1086C/BG505.664 DS-	Uncleaved (non-native) vs native NFL	Trimer prime or boost	Lab of
SOSIP VRC 4571	trimer		Immunoregulation
			NIAID
Consensus M, Consensus S	Induces nAbs of tier 1 HIV	Heterologous prime-boost	Imperial College
SOSIP trimers			
Mosaic SOSIP trimers	Induces nAbs of tier 1 HIV	Heterologous prime-boost	Imperial College
Acute SOSIP trimers		Heterologous prime-boost	
16055 NFL gp140	Soluble cleavage-independent clade C	Boost	IAVI/CHAVD
	trimer binds V2 apex bnAbs		
UFOVax	Uncleaved prefusion-optimized (UFO)		Scripps
	stabilized		

Germline Targeting Immunogens in GMP or phase 1 trials

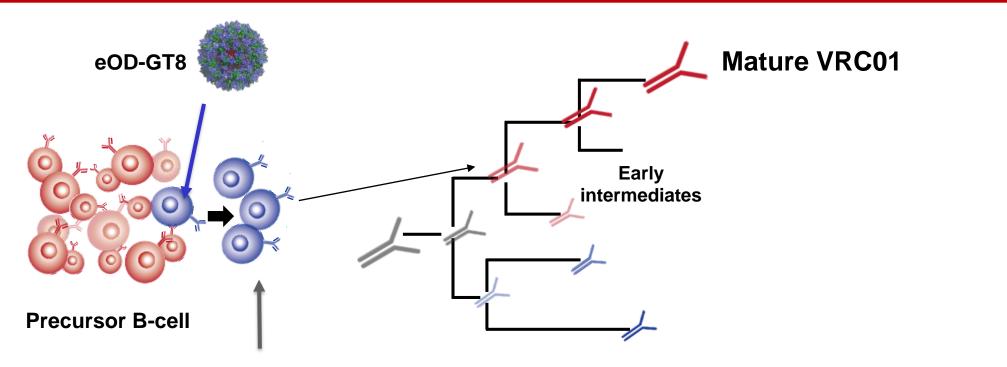

Germline-targeting Envs			
eODGT8 60-mer nanoparticle	Induces precursors of VRC01-class	Germline targeting prime for	CHAVD (Scripps)
	CD4 binding site bnAbs	sequential prime boost	
CH505 TF chimeric stabilized SOSIP	Induces CD4bs, V2 precursors, bnAbs;	Trimer prime or boost	CHAVD (Duke)
	boost F peptide bnAbs		
BG505 GT1.1 SOSIP	Binds to precursor BCR of CD4bs and	Germline targeting trimer	R. Sanders
	V3-glycan bnAbs		
CH505 TF gp120s Env (stable and	Binds low affinity to precursors of	Sequential Env lineage concept	CHAVD (Duke)
transient)	CH103 CD4bs bnAb BCRs		
CH505 M5 gp120	Binds low affinity to precursors of	Sequential Env lineage concept	CHAVD (Duke)
	CH235/ANC131-class CD4bs bnAbs		
CH505 M5 G458Y GNT1- SOSIP	High affinity; induces precursors of	Germline targeting	CHAVD (Duke)
nanoparticle	CH235/ANC131-class CD4bs bnAbs	trimer/nanoparticle	
CH848 10.17 DT SOSIP nanoparticle	Induces precursors of DH270 V3-	Germline targeting	
	glycan bnAbs	trimer/nanoparticle	
N332 GT 5.2 trimer	Induces precursors of PGT 121 V3-	Germline targeting prime for	CHAVD (Scripps)
	glycan bnAbs	sequential prime boost	
MT145K deltaV5 SOSIP trimer	Induces V2 glycan bnAb precursor B	Germline	CHAVD (Scripps)
	cells, immune focusing	targeting/immunefocusing prime	
		or boost	

Engineered Outer Domain (eOD-GT8) Self Assembling Nanoparticle to elicit VRC01-class antibodies

Courtesy: Bill Schief

IAVI G001 Phase I Trial: eOD-GT8 60mer/AS01B

LS-60mer nanoparticle


Phase 1 start: Sept 2018

- Conducted at FHCRC (Seattle) and GWU (Washington, DC)
- Critical readout by B cell sorting and B-cell sequencing performed at FHCRC and VRC

Study Group	N	eOD-GT8 60mer dose	Week 0	Week 8
1 (low dose)	18	20 µg	eOD-GT8 60mer/ AS01B	eOD-GT8 60mer/ AS01B
	6	-	DPBS	DPBS
2 (high dose)	18	100 µg	eOD-GT8 60mer/ AS01B	eOD-GT8 60mer/ AS01B
	6	-	DPBS	DPBS
Total	48			

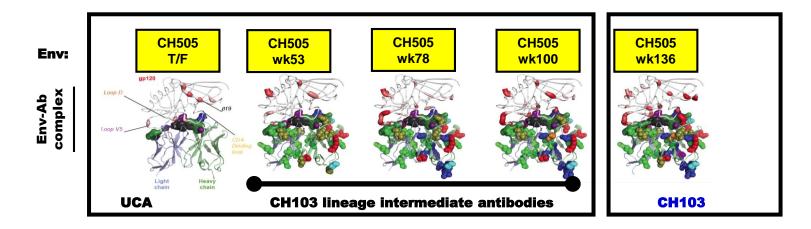
Courtesy of Bill Schief, FHCRC and GWU

Phase 1 Immune Analysis B-cell Genetics

VRC01 class sequences

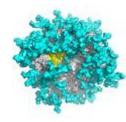
- Ag-specific cell sorting
- PCR recovery of lg genes

Success: Vaccine-elicited VRC01-class sequences


- Relatively low SHM
- Not yet neutralizing

Lineage and epitope based immunogens in GMP or phase 1 trials

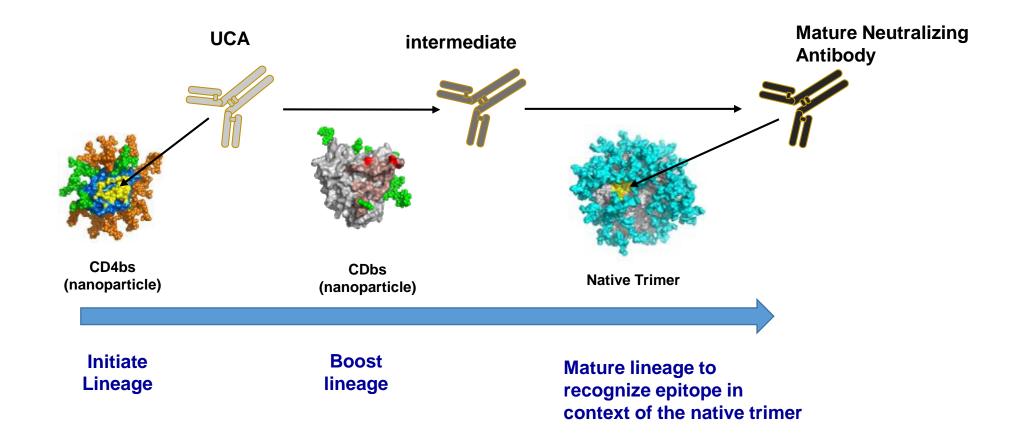
Lineage-based Envs					
EnvSeq-1 CH505 gp120	Induces precursors of CH103 CD4bs	Sequential Env lineage concept	CHAVD (Duke)		
sequential Envs	bnAbs				
426c degly gp120 nanoparticles	Induces precursors of VRC01-class	Germline targeting prime for	Fred Hutch		
	bnAbs after eOD8 prime	sequential boost			
Epitope-based Envs					
Fusion peptide on carrier	Induces nAbs targeting fusion peptide	Prime for a boost with BG505	VRC		
protein		and/or CH505 TF SOSIP trimers			
MPER peptide liposomes	Binds to, induces precursors of proximal	Germline targeting prime for	CHAVD (Duke)		
	MPER gp41 bnAbs	sequential boost of proximal			
		MPER nAbs			
Man 9-V3 glycopeptide	Targets V3-glycan and 2G12-like bnAbs	Epitope targeting boost for glycan-	CHAVD (Duke);		
nanoparticle		reactive antibodies	Chemitope		

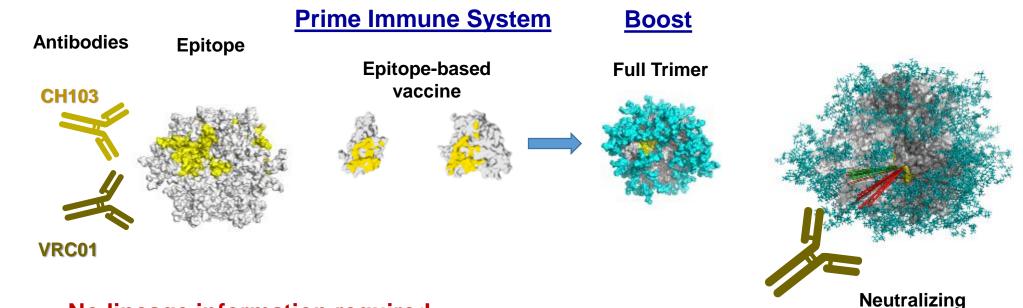

Phase 1 ongoing: Lineage Env immunogens

Goal: Elicit the CD4bs (CH103) Ab lineage - leading to broad neutralization

Planned: CH505 TF stabilized SOSIP trimer

Evaluate whether the high affinity germline targeting CH505 lineage TF trimer can expand CD4bs bNAb precursors GMP: Q2 2019; Clinical Trial: Q4 2019

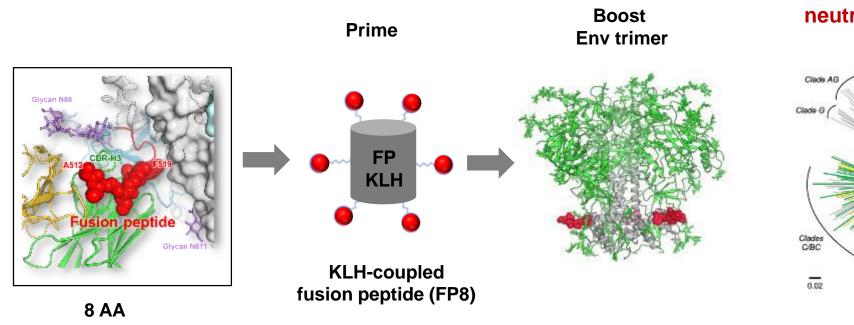



Slide Courtesy: Bart Haynes

Getting to Tier 2 Neutralization Breadth

Epitope-based Vaccine Design

Antibodies


Teach the immune system to recognize the Env trimer

No lineage information required...

Use structural knowledge of an epitope, as defined by recognition of a broadly neutralizing antibody, to design the vaccine immunogen; i.e., mimic epitope

CD4-binding site

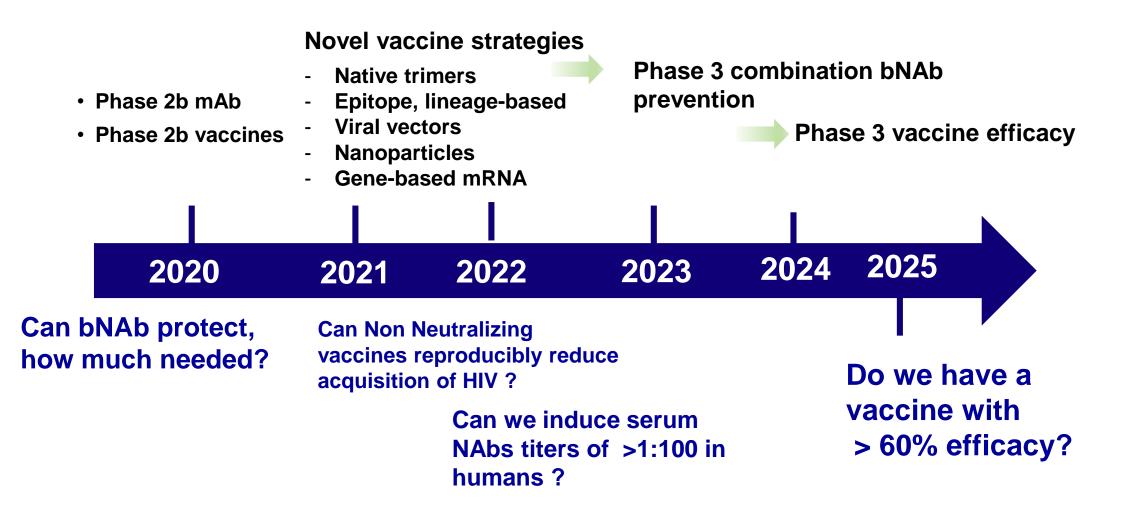
Epitope-based Design: Fusion Peptide

Murine antibody 31% neutralization breadth

Clades A/ACD/AD

Clede AC

Clades D/CD


Clade B

0 10 -1 00

Serum – inconsistent, but clear indications of cross-neutralization

K Xu, P Acharya, R Kong, C Cheng, <u>P Kwong</u> et al. Nat Med (2018)

Summary

- If any of the HIV vaccines or antibodies in efficacy trial testing are effective, it will unleash an enormous explosion in scientific inquiry to improve, adapt, and most importantly, bring to the world a new form of HIV prevention.
- An HIV vaccine will be the most complex vaccine ever designed:
 - Yes, the regimens will be an implementation challenge.
 - Vaccination may disrupt the way we diagnose HIV.

9/30/2019

- Vaccines will, however, overcome the current barriers to population based control of HIV and provide a tool that could get us to an HIV free generation; a reality that is not present with the current tools.
- And yes, the science behind such a vaccine will have additional spinoffs.

Acknowledgements

All the study staff, the community engagement teams, and most of all, the participants who join the journey!

HIV VACCINE

9/30/2019

Acknowledgements

Vaccine Research Center

- John Mascola (quite something)
 - Rick Koup
 - Peter Kwong
 - Julie Ledgerwood
 - Barney Graham
 - Danny Douek
 - Adrian McDermott

Duke CHAVD

- Bart Haynes
- Tom Denney
- Tony Moody
- Kevin Saunders
- Wilton Williams

Scripps CHAVD

- Dennis Burton
 - Bill Schief
 - Rich Wyatt
- Shane Crotty

Acknowledgments

HVTN Lab Program

Julie McElrath, Georgia Tomaras, Nicole Frahm, John Hural, David Montefiori, Steve DeRosa, Erica Andersen-Nissen, Lynn Morris

USMHRP

Nelson Michael, Robert O'Connell

Bill and Melinda Gates Foundation

Emilio Emini, Nina Russell and team

Sanofi Pasteur

Jim Tartaglia, Sanjay Gurunathan, Sanjay Phogat

<u>Janssen</u>

Frank Tomaka, Maria Pau, Hanneke Schuitemaker, Paul Stoffels

HVTN EMT/SDMC/Leadership

Glenda Gray, Scott Hammer, Jim Kublin, Susan Buchbinder, Dan Barouch, Georgia Tomaras, Troy Martin, Peter Gilbert, Yunda Huang, Holly Janes, Gepi Pantaleo, Linda-Gail Bekker, Shelly Karuna, Nicole Grunenberg, Philipp Mann, Carmen Paez, Carter Bentley, Will Hahn, Huub Gelderblom

DAIDS Vaccine Research Program

Carl Dieffenbach, Mary Marovich, Dale Hu, Phil Renzullo, Pat D'Souza, Paul Kitsutani, Mary Allen, Jim Lane, Mike Pensiero

Collaborators - Africa

- Glenda Gray
- Linda Gail-Bekker
- Gita Ramjee
- Cheryl Louw
- Kathy Mngadi
- Graeme Meintjes
- Craig Innes
- Nicole Hunt
- Phillip Kotze
- Francis Martinson

- Jani Ilesh
- Stewart Reid
- Leonard Maboko
- Maphoshane Nchabeleng
- Lungiswa Mtingi
- Dumezweni Ntshangase
- William Brumskine
- Zvavahera Chirenje
- Mookho Malahlela
- Modulakgotla Sebe

Collaborators - U.S., South America and Europe

- Mark Mulligan
- Paul Goepfert
- Ray Dolin
- Lindsey Baden
- Ken Mayer
- Richard Novak
- Benigno Rodriguez
- Spyros Kalams
- Scott Hammer

- Beryl Koblin
- Ian Frank
- Michael Keefer
- Susan Buchbinder
- Julie McElrath
- Gepi Pantaleo
- Jorge Sanchez
- Martin Casapia
- Robinson Cabello

HVTN 702 Acknowledgements

BILL& MELINDA GATES foundation UNOVARTIS

HVTN 705/HPX2008 Acknowledgements

Funders & Other Collaborators

- Bill & Melinda Gates Foundation (BMGF)
- Janssen Vaccines & Prevention, B.V.
- NIAID/DAIDS
- Ragon Institute of MIT, MGH and Harvard
- US Army Medical Materiel Development Activity (USAMMDA)

PHARMACEUTICAL COMPANIES OF Johnson Johnson

National Institute of Allergy and Infectious Diseases

BILL& MELINDA GATES foundation

NIAID/DAIDS ACKNOWLEDGEMENTS

NIAID/DAIDS Senior Management

Anthony S. Fauci Carl Dieffenbach

Preclinical Research Development Branch

Jim Bradac (Branch Chief) Que Dang Angela Malaspina Nancy Miller Jessica Santos Alan Schultz Stuart Shapiro Anjali Singh Jonathan Warren

VRP- Office of the Director Kevin Ryan Barbara Cunningham Sherolyn Earle Mary Nguyen Tina Tong

Vaccine Clinical Research **Branch** Dale Hu (Branch Chief) Philip Renzullo Mary Allen Jane Baumblatt Cesar Boggiano Maggie Brewinski-Isaacs Patricia D'Souza Margarita Gomez Julia Hutter Nina Kunwar James Lane **Pierre Paisible** Laura Polakowski Edith Swann

Vaccine Translational Research Branch Michael Pensiero (Branch Chief) Maria Chiuchiolo Jennifer Grossman Christopher Hamlin Sonia Gales Vijay Mehra Ruchi Raval Shah Raza Shyam Rele Nandini Sane Amanda Ulloa Sujata Vijh

VACCINE

TRIALS NETWORK

