Antimicrobial Resistance (AMR) Global Overview Global & National Action Plans

Combatting Antimicrobial Resistance: Public Health Challenges & Priorities

Sirenda Vong, MD, PhD, HDR Program Area Manager, Health Emergency Information and Risk Assessment Unit Department of Health Emergencies World Health Organization Regional Office for South-East Asia (WHO SEARO)

vongs@who.int

What's at Stake with AMR and Antibiotic Resistance

- AMR refers to viruses, bacteria, parasites and fungus
- Antibiotic resistance (ABR) refers to common bacteria vs. the case of Mycobacteria spp.
- Current rise of ABR poses the threat of **POST-ANTIBIOTIC ERA**?
 - Resistance to GNB is worrisome (MDR, XDR or PDR)
 - MRSA & VRE is spreading
 - Life threatening and untreatable common infections
 - Skin infections, urinary tract infections, pneumonia, bloodstream infections, cancer treatment, surgery
 - ABR-associated costs: extra-hospital days, treatment costs, productivity losses
 - Carbapenem resistance, colistin resistance are spreading
- Estimated yearly US costs <u>today</u> (by CDC): Direct up to \$20 billion; Indirect up to \$35 billion
- **<u>By 2050</u>**, World Bank estimates annual loss of 1% 3.8% global GDP

Antibiotic Resistance Requires Global Action

SUPER RESISTANT BACTERIA: PROBLEM TODAY, CRISIS TOMORROW

In INDIA, over

died in one vear as a result of

Limited data on Burden Of ABR

Silent/invisible threat

Source: Antibiotic resistance: the global threat, CDC (2013)

Antibiotic Resistance

- ABR is a natural phenomenon
- Overuse and misuse of antibiotics in human, animal and environmental sectors
- Spread accelerated by drivers
 - Poor infection control practices in hospitals and agriculture
 - Inadequate sanitary conditions
 - Inappropriate food-handling,
 - Few sewage treatment plants
- Safety Net is shrinking
 - Against Gram-neg. bacteria+++
 - Limited incentives for new atb discovery
- Global efforts needed to mitigate spread

Number of New Molecular Entity (NME) Systemic Antibiotics Approved by the US FDA Per Five-year Period, 1983 – 2012

Source: CID, 2012

Risk assessment for antibiotic resistance in South East Asia

Fanny Chereau and colleagues assess the risk of the emergence and spread of antibiotic resistance in South East Asia and suggest it is the highest of the World Health Organization regions

AMR is a Complex Issue:

- 1. Multifaceted:
 - Multiple sectors
 - Multiple drivers, barriers
- 2. Limited BOD data and limited surveillance in LMICs
- 3. Uncertainties on contribution of animal and environmental sectors on BOD AMR in humans

*Chereau F, Opatowski L, Tourdjman M, Vong S. Risk assessment for antibiotic resistance in South East Asia. BMJ. 2017 Sep 5;358:j3393.

AMR Surveillance data are complex to analyze and report

4 specimen types

8 priority pathogens

1. Acinetobacter spp.

2. *E. Coli*

3. K. Pneumoniae

4. N. Gonorrheae

- 5. S. Pneumoniae
- 6. *S. aureus*

7. Salmonella spp.

8. *Shigella* spp.

Urine

<u>Origin:</u>

Healthcare facility Community Animal types Environmental types

Atb Susceptibility Testing

>10 antibiotic classes>50 antibiotics

Global Action Plan - AMR

- WHO's GLOBAL POLICY initiatives since 2015, endorsed by FAO, OIE
- An obligation or major drive to developing GAP-aligned NAPs
- GAP implementation:
 - Five strategic objectives
 - Guiding principles

rganizatio

Global Action Plan - AMR

Five strategic objectives

- Improve awareness and understanding
- Strengthen knowledge thru surveillance and research
- Reduce incidence of infection
- Optimize the use of antimicrobials
- Ensure sustained investment

• Guiding principles re surveillance

- 10 Work Stream approaches including One-health
- Partnership with OIE and FAO
- Accounting for different capacities of member States

GAP Implementation: 10 Work Streams

Global Momentum – High Level Awareness

- Public Health agriculture communities have recognized AMR to be an economic and health problem for decades
- Global Security Threat (2016, United Nations General Assembly)
 - Global solutions via political and intersectoral approach
- Interagency Coordination Group (IACG) on AMR recommended building partnerships beyond the Tripartite:
 - Go beyond traditional One-Health Tripartite Partners
 - Supranational governance ~Intergovernmental Panel on Climate Change
- Many Champions and funders incl. G7 countries, BMGF, World Bank etc
- Growth of knowledge on AMR: <2,000 papers per year the 90s to 11,000 in 2018

Why aren't We winning?

Major Global Policy Challenges Translating Evidence and Political Will to Impact

- Substantial progress in past years:
 - Establishing enabling environment
 - Reducing need for antibiotic usage
 - Limiting the use of antibiotics
- Significant gap between solutions and implementation in LMICs
- Implementation gaps needing local solutions (HOW):
 - low level of implementation, fragmentated interventions,
 - poor capacity for enforcement
- Major gap: investment case highlighting the needs for potential co-benefits or AMR-sensitive interventions
- Focus on research agendas and implementation research
- Model to follow: SDG 3 (Health) and elimination of HIV, TB and malaria?

Pulling Together

🔊 🚯 🝙 🗈 🕤 🐼

Knowledge and Implementation Gaps in Addressing Antimicrobia

to Beat Superbugs

Implementation Research Maximizing Impact with best use of resources

Inplementation Research to solve Implementation Problems IR question – key to address each Step of Program Cycle

Program Cycle

IR questions on identifying bottlenecks: Political, social, costs, cultural, Managerial or organizational factors

> IR question on each step: acceptability, adoption, appropriateness, feasibility, implementation cost, sustainability

Other IR questions

 Test approaches to improve strategies, policies, interventions
What is the likely course of future implementation? (prediction)

Conclusions

- *V Cholerae* and Azithromycin and other macrolides are not global priorities within Global AMR Surveillance System (GLASS)
- Needs for GTFCC to promote and guide:
 - Surveillance of Azithromycin resistance in cholera-effected countries adopting chemoprophylaxis
 - Monitor the extent and effectiveness of any prophylaxis strategy
- Major progress at global level but early implementation phase in LMICs
- Needs to address local priority needs thru implementation research prioritization (local solutions)

