Advances in Vaccine and Immunization Technologies

MAYAN LUMANDAS, MD

Outline

Vaccination Milestones
 Novel Vaccine Technologies
 New Vaccine Platforms
 Adjuvants
 New Vaccine Delivery Systems

Vaccination Milestones

Rosa, S et al. mRNA vaccines manufacturing: Challenges and bottlenecks. <u>Vaccine</u>, 2021 Apr 15; 39(16): 2190–2200.

96-100% reduction in Cases and Deaths

Samantha Vanderslott, Bernadeta Dadonaite and Max Roser (2013) - "Vaccination". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/vaccination'

Vaccine Platforms

Classical platforms

Whole-inactivated virus Example: Polio vaccine COVID-19: PiCoVacc in phase 1 clinical trials

Live-attenuated virus Example: MMR vaccine COVID-19: in preclinical stage

Protein subunit Example: Seasonal influenza vaccine COVID-19: NVX-CoV2373 in phase 1/2 clinical trials

Virus-like particle Example: Human papillomavirus vaccine COVID-19: in preclinical stage

Next-generation platforms

Viral vector Example: VSV-Ebola vaccine COVID-19: AZD1222, Ad5-nCoV in phase 1/2/3 clinical trials

DNA Example: Not currently licensed COVID-19: INO-4800 in phase 1 clinical trials

RNA Example: Not currently licensed COVID-19: mRNA-1273, BNT162 in phase 1/2 clinical trials

Antigen-presenting cells Example: Not currently licensed COVID-19: LV-SMENP-DC, COVID-19/aAPC in phase 1/2 clinical trials

Conventional Technologies

Platform	Description	Examples
Live-Attenuated	Prepared from weakened pathogens	MMR, BCG, cholera, Rotavirus, Varicella
Inactivated	Derived from killed form of virulent pathogens	Poliovirus, Hepatitis A, Diphtheria and tetanus toxoid
Virus-like particles	Macromolecular assemblies designed to mimic the morphology of a native virus	Human Papillomavirus
Synthetic peptides	Identification and synthesis of immunodominant peptide sequences	Meningococcal Group B
Fractional Inactivated	Inactivation of toxins	Diphtheria and tetanus toxoid and acellular pertussis
Polysaccharide and polysaccharide conjugate	Derived from carbohydrate- based polymers	Meningococcal, Typhoid, Pneumococcal, Haemophilus B

Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel). 2021 Dec 16:9(12):1490

Virus-like Particles

- Macromolecular assemblies designed to mimic the morphology of a native virus
- Increased potency due to multivalent interaction
- Manufacturing challenges
- Used in several licensed vaccines such as Hepatitis B and HPV
- Being developed for Chikingunya, Zika and SARS-CoV-2

Prates-Syed, W, et al. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. *Vaccines* 2021, 9(12), 1409

Synthetic peptide vaccines

- technology using fragments of protein antigen sequences which are chemically synthesized and assembled into a single molecule¹
- Example of FDA-approved synthetic peptide vaccine is for Meningococcal B²
- used in development of several vaccines for infectious diseases like Malaria, HCV, infuenza virus and HIV^{1 and cancer}

Hamley, I. Peptides for Vaccine Development.ACS Appl. Bio Mater. 2022, 5, 3, 905–944 Publication Date:February 23, 2022

1.Matic, Z and Santac, M. Current view on novel vaccine technologies to combat human infectious diseases. Applied Microbiology and Biotechnology (2022) 106:25–56 2.Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel). 2021 Dec 16;9(12):1490

Search for Safe and Effective Vaccines Continues....

NEWS FEATURE 18 December 2020

The lightning-fast quest for COVID vaccines — and what it means for other diseases

The speedy approach used to tackle SARS-CoV-2 could change the future of vaccine science.

Philip Ball

- Research and development has been done for mRNA vaccine for over 10 years
- After sequencing, it took just a few days to make the mRNA vaccine candidates

Available at https://www.nebraskamed.com/COVID/were-the-covid-19vaccines-rushed

mRNA Vaccines

- mRNA vaccines teach our cells how to make proteins in order to trigger an immune response
- mRNA vaccines have several advantages compared to other vaccines such as shorter manufacturing times
- they do not contain a live virus, there is no risk of causing disease.

Viral vector vaccines

- Viral vector vaccines use a modified version of a different virus as a vector to deliver protection.
- Some examples of viruses that are used as vectors include influenza, vesicular stomatitis virus (VSV), measles virus, and adenovirus. For COVID-19 vaccine, Adenovirus has been used.

Available at https://brighterworld.mcmaster.ca/articles/analysis-how-the-puzzle-of-viral-vector-vaccines-was-solved-leading-to-todays-covid-19-shots/

DNA vaccines

- consist of plasmid DNA (pDNA) containing the transgene encoding the antigen of interest
- beginning of the research of the DNA vaccines, in the early 1990s
- Three major limitations of DNA vaccines: (i) low level of intracellular/ intranuclear transport of pDNA, which results in low immunogenicity (Hasson et al. 2015; Klimov 2019), (ii) safety issues regarding the possibility of integration of pDNA into the genomic DNA of the vaccinee and activation of oncogenes (Wurtele et al. 2003), and (iii) potential development of autoimmunity by elicitation of anti-DNA antibodies (Lilic and Ghosh 1994; Zafrir et al. 2012)

Bacterial vector vaccines

- Use live bacterial cells as carriers
- Carriers are classified into nonpathogenic and attenuated pathogenic bacteria
- Risk of infection especially in children, elderly and immunocompromised
- Genetic engineering allows attenuation

Examples of bacterial vectors: Yersinia pestis¹ Mycobacterium bovis² Pseudomonas aeruginosa² Shigella² Salmonella² Listeria monocuyogenes² Vibrio cholera²

1.Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel). 2021 Dec 16;9(12):1490 2.Creative Biolabs. Avaialble at https://www.creative-biolabs.com/vaccine/bacterial-vector-vaccine-design.htm

COVID-19 Vaccines Authorized by the Philippine FDA

COVID-19 Vaccines	Platform
Pfizer-BioNTech/Comirnaty COVID-19 mRNA Vaccine (nucleoside modified)	mRNA
ChAdOx1-S[recombinant] VAXZEVRIA (COVID-19 Vaccine AstraZeneca)	Viral vector
SARS-CoV-2 Vaccine (Vero Cell), Inactivated [Coronavac]	Inactivated
Sputnik V Gam-COVID-Vac	Viral vector
Sputnik Light COVID-19 Vaccine	Viral vector
Janssen COVID-19 Vaccine (Ad26.COV2-S (recombinant)	Viral vector
Whole Virion, Inactivated Corona Virus Vaccine [Covaxin]	Inactivated
COVID-19 mRNA Vaccine (nucleoside modified) [COVID-19 Vaccine Moderna]	mRNA
COVID-19 Vaccine (Vero Cell), Inactivated [COVID-19 Vaccine Sinopharm]	Inactivated
SARS-CoV-2 rS Protein Nanoparticle Vaccine [Covovax]	Protein Sub-unit

List of COVID-19 Vaccines Authorized by the FDA. Available at https://www.fda.gov.ph/list-of-fda-issued-emergency-use-authorization/

Novel Coronavirus candidate vaccine development

	199				175			
0	50	100	150	20	0 25	50 30	00 35	50 400
	Vaccines in pre-clinical development Vaccines in clinical development						lopment	
Platf	orm					Candidat	e vaccines (r	no. and %)
	PS	Protein subun	it			56		32%
	VVnr Viral Vector (non-replicating)				23		13%	
	DNA DNA				16		9%	
	IV	Inactivated Virus				22		13%
	RNA	RNA				41	41 24%	
	VVr	VVr Viral Vector (replicating)				4		2%
	VLP Virus Like Particle				7 4%		4%	
v	VVr + APC VVr + Antigen Presenting Cell				2		1%	
	LAV Live Attenuated Virus				2		1%	
V	VVnr + APC VVnr + Antigen Presenting Cell				1		1%	
В	acAg-SpV	Bacterial antig	en-spore ex	pressio	on vector	1		1%
						175		

Phase 1=53 Phase 1/2=30 Phase 2=14 Phase 2/3=16 Phase 3=49 Phase 4=11

World Health Organization COVID-19 vaccine tracker and landscape. Available at

Creating a Stronger Immune Response

Adjuvants

- an ingredient used in some vaccines that helps create a stronger immune response
- can cause more local reactions (such as redness, swelling, and pain at the injection site) and more systemic reactions (such as fever, chills and body aches) than non-adjuvanted vaccines
- Aluminum salts, such as aluminum hydroxide, aluminum phosphate, and aluminum potassium sulfate have been for more than 70 years.
- Aluminum salts were initially used in the 1930s, 1940s, and 1950s with diphtheria and tetanus vaccines

Adjuvants Licensed in the U.S.

Adjuvant	Composition	Vaccines
<u>Aluminum</u>	One or more of the following: amorphous aluminum hydroxyphosphate sulfate (AAHS), aluminum hydroxide, aluminum phosphate, potassium aluminum sulfate (Alum)	Anthrax, DT, DTaP (Daptacel), DTaP (Infanrix), DTaP-HepB-IPV (Pediarix), DTaP-IPV (Kinrix), DTaP-IPV (Quadracel), DTaP –IPV/Hib (Pentacel), DTaP- IPV-Hib-HepB (VAXELIS), HepA (Havrix), HepA (Vaqta), HepB (Engerix-B), HepB (PREHEVBRIO), HepB (Recombivax), HepA/HepB (Twinrix), HIB (PedvaxHIB), HPV (Gardasil 9), Japanese encephalitis (Ixiaro), MenB (Bexsero, Trumenba), Pneumococcal (Prevnar 13, Prevnar 20, VAXNEUVANCE), Td (Tenivac), Td (Mass Biologics), Td (no trade name), Tdap (Adacel), Tdap (Boostrix), Tick-Borne Encephalitis (TICOVAC)
<u>AS01_B</u>	Monophosphoryl lipid A (MPL) and QS-21, a natural compound extracted from the Chilean soapbark tree, combined in a liposomal formulation	Zoster vaccine (Shingrix)
<u>AS04</u>	Monophosphoryl lipid A (MPL) + aluminum salt	Human papillomavirus, or HPV (Cervarix)

Centers for Disease Control and Prevention. Adjuvants and Vaccines. Available at https://www.cdc.gov/vaccinesafety/concerns/adjuvants.html#print

Adjuvants Licensed in the U.S.

<u>CpG 1018</u>	Cytosine phosphoguanine (CpG), a synthetic form of DNA that mimics bacterial and viral genetic material	HepB (Heplisav-B)
<u>Matrix-</u> M [™]	Saponins derived from the soapbark tree (<i>Quillaja</i> <i>saponaria</i> Molina)	COVID-19 vaccine (Novavax COVID-19 Vaccine, Adjuvanted)
<u>MF59</u>	Oil in water emulsion composed of squalene	Influenza (Fluad and Fluad Quadrivalent)

Centers for Disease Control and Prevention. Adjuvants and Vaccines. Available at https://www.cdc.gov/vaccinesafety/concerns/adjuvants.html#print

Can we do more?

Yes, we can!

A healthcare provider uses an empty sample sprayer to demonstrate how to administer FluMist to a preschooler. John Harrington / PR NEWSWIRE via AP, file

Available at https://www.nbcnews.com/health/healthnews/flumist-nasal-flu-vaccine-can-come-back-vaccineadvisers-say-n849986

Lemoine, C, et al. Technological Approaches for Improving Vaccination Compliance and Coverage. Vaccines (Basel). 2020 Jun 16;8(2):304. doi: 10.3390/vaccines8020304. PMID: 32560088; PMCID: PMC7350210.

Innovative Vaccine Delivery Systems

Vaccine Platform	Type of Candidate Vaccine	No. of doses	Schedule	Route	Developers	Status
Viral vector (Non- replicating)	Ad5-triCoV/Mac or ChAd-triCoV/Mac, new experimental adenovirus-based vaccines expressing SARS-CoV-2 spike, nucleocapsid and RNA polymerase proteins	1	Day 0	AE	McMaster University	Phase 1
Viral vector (Non- replicating)	MVA-SARS-2-ST Vaccine	1	Day 0	ІН	Hannover Medical School	Phase 1
Viral vector (Replicating)	NDV-HXP-S; A Live Recombinant Newcastle Disease Virus-vectored COVID-19 Vaccine	1	Day 0	IN	Sean Liu, Icahn School of Medicine at Mount Sinai	Phase 2/3
Protein subunit	ACM-SARS-CoV-2-beta ACM-CpG vaccine candidate (ACM-001)	2	Day 0 + 28	IN	ACM Biolabs	Phase 1
Protein subunit	A subunit OMV-linked HexaPro spike vaccine. The vaccine platform is based on outer	1	Day 0	IN	Intravacc B.V.	Phase 1
Protein subunit	PepGNP-SARSCoV2, A CD8 T-cell priming adaptive vaccine composed of a Coronaviruses specific peptides mounted on a gold nanoparticle	2	Day 0 + 21	ID	Emergex Vaccines Holding Limited	Phase 1
Viral vector (Non- replicating)	Ad26.cov2.s+bcg vaccine. AD26-BCG	1	Day 0	ID	Han Xu, M.D., Ph.D., FAPCR, Sponsor- Investigator, IRB Chai	Phase 1
Protein subunit	VXS-1223U Microarray patch (HD-MAP) vaccine composed of ARS-CoV-2 spike protein (HexaPro)	1	Day 0	ID	Vaxxas Pty Ltd	Phase 1

World Health Organization COVID-19 vaccine tracker and landscape. Available at

Innovative Vaccine Delivery Systems

Vaccine Platform	Type of Candidate Vaccine	No. of doses	Schedule	Route	Developers	Status
Viral vector (Non- replicating)	VXA-CoV2-1 Ad5 adjuvanted Oral Vaccine platform	2	Day 0 + 28	Oral	Vaxart	Phase 2
DNA based vaccine	bacTRL-Spike oral DNA vaccine	1	Day 0	Oral	Symvivo Corporation	Phase 1
Protein subunit	CoV2-OGEN1, protein-based vaccine	1-2	Day 0 +/- 14	Oral	USSF/Vaxform	Phase 1
Bacterial antigen- spore expression vector	COVID19 Oral Vaccine Consisting of Bacillus Subtilis Spores	3	Day 0 + 14 + 28	Oral	DreamTec Research Limited	NA
Viral vector (Non- replicating) + APC	LV-SMENP-DC vaccine. Dendritic cells are modified with lentivirus vectors expressing Covid-19 minigene	1	Day 0	SC & IV	Shenzhen Geno- Immune Medical Institute	Phase 1/2

World Health Organization COVID-19 vaccine tracker and landscape. Available at COVID-19 vaccine tracker and landscape (w

What's Next?

- Effective antigens?
- Which genes must be upregulated or downregulated?
- What antigenic constructions can be used to achieve a protective immune response?
- Adjuvant formulations?
- How can vaccines be painlessly delivered?
- Thermo-stable vaccines?
- Cost-effective manufacturing?
- Rapid mass deployment?

Safe and Effective Vaccines

100 Days

What if it took IOO days to make a safe and effective vaccine against any virus?

CEPI and the UK Government recently hosted the Global Pandemic Preparedness Summit to explore how we can respond to the next "Disease X", by making safe, effective vaccines within IOO days.

Coalition for Epidemic Preparedness innovations. Available at https://100days.cepi.net/

Thank you